Oxygen crossover effect on palladium and platinum based electrocatalysts during formic acid oxidation studied by scanning electrochemical microscopy

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/67736
Información del item - Informació de l'item - Item information
Title: Oxygen crossover effect on palladium and platinum based electrocatalysts during formic acid oxidation studied by scanning electrochemical microscopy
Authors: Perales-Rondón, Juan V. | Herrero, Enrique | Solla-Gullón, José | Sánchez-Sánchez, Carlos M. | Vivier, Vincent
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Crossover | FAOR | ORR | Fuel cells | SECM
Knowledge Area: Química Física
Issue Date: 15-May-2017
Publisher: Elsevier
Citation: Journal of Electroanalytical Chemistry. 2017, 793: 218-225. doi:10.1016/j.jelechem.2016.12.049
Abstract: The electrocatalytic activity towards formic acid oxidation reaction (FAOR) in the presence of simultaneous oxygen reduction reaction (ORR) displayed by 5 different metallic nanoparticles (NPs) (Pt100, Pt75Pd25, Pt50Pd50, Pt25Pd75 and Pd100) was studied and compared using chronoamperometry and the micropipette delivery/substrate collection (MD/SC) mode of the scanning electrochemical microscopy (SECM). This is of special interest for understanding the O2 crossover effect in direct formic acid fuel cells (DFAFCs) and to search highly selective electrocatalysts useful in mixed-reactant fuel cells (MRFCs). A detailed analysis of the SECM results in comparison with chronoamperometry demonstrates, for the first time, the relevant role played by dissolved O2 in solution on the Pd100 NPs deactivation during FAOR, which cannot be explained neither by the specific adsorption of dichloroethane (DCE) on Pd nor by a simple addition of two opposed currents coming from simultaneous FAOR and ORR. Two main mechanistic factors are proposed for explaining the different sensitivity towards O2 presence in solution during FAOR when comparing Pd- and Pt-rich catalysts. On the one hand, the relevance of H2O2 production (ORR byproduct) and accumulation on Pd NPs, which alters its performance towards FAOR. On the other hand, the predominance of the poisoning pathway forming COads during FAOR on Pt NPs, whose oxidation is facilitated in the presence of traces of O2. Interestingly, the deactivation effect displayed on Pd100 NPs during FAOR due to the H2O2 generation and accumulation becomes negligible if a convective regime is applied in solution. SECM is proved as a fast and powerful technique for studying O2 crossover effect in different electrocatalysts and for identifying highly selective electrocatalysts candidates for MRFCs. In particular, among the samples evaluated, Pt75Pd25 NPs present the highest average performance for FAOR in 0.5 M H2SO4 solution in the presence of O2 within the potential range under study (0.3–0.7 V vs RHE).
Sponsor: This work was financially supported by CNRS (projet ImaECell, Défi Instrumentation aux limites 2015), MINECO (projects CTQ2013-44083-P and CTQ2013-48280-C3-3-R) and Generalitat Valenciana (project PROMETEOII/2014/013). J. Solla-Gullón acknowledges financial support from VITC (Vicerrectorado de Investigación y Transferencia de Conocimiento) of the University of Alicante.
URI: http://hdl.handle.net/10045/67736
ISSN: 1572-6657 (Print) | 1873-2569 (Online)
DOI: 10.1016/j.jelechem.2016.12.049
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Elsevier B.V.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.jelechem.2016.12.049
Appears in Collections:INV - LEQA - Artículos de Revistas
INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Perales_etal_JElectrChem_final.pdfVersión final (acceso restringido)955,77 kBAdobe PDFOpen    Request a copy
Thumbnail2017_Perales_etal_JElectrChem_accepted.pdfAccepted Manuscript (acceso abierto)863,46 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.