Understanding CO oxidation reaction on platinum nanoparticles

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/67735
Información del item - Informació de l'item - Item information
Título: Understanding CO oxidation reaction on platinum nanoparticles
Autor/es: Arán-Ais, Rosa M. | Vidal-Iglesias, Francisco J. | Farias, Manuel J.S. | Solla-Gullón, José | Montiel, Vicente | Herrero, Enrique | Feliu, Juan M.
Grupo/s de investigación o GITE: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Platinum | Nanoparticles | CO oxidation | Preferential shape
Área/s de conocimiento: Química Física
Fecha de publicación: 15-may-2017
Editor: Elsevier
Cita bibliográfica: Journal of Electroanalytical Chemistry. 2017, 793: 126-136. doi:10.1016/j.jelechem.2016.09.031
Resumen: To understand how the CO oxidation reaction proceeds on nanoparticles, which have complex surface structures, the behavior of the nanoparticles has to be related to that of single crystal electrodes with a well-defined surface structure. However, the direct extrapolation of the results is not possible because significant differences in the behavior between both type of surfaces are observed. In single crystal electrodes in both acidic and alkaline media, the reaction initiates on defects on the CO adlayer. These defects can be already present on the surface, as surface defects or steps, or generated during the formation of the CO adlayer. In the case of steps, the oxidation starts on the lower part of the step. The only difference between the reaction behavior between acidic and alkaline solutions is the lower mobility of the CO in alkaline solutions, which generates adlayers with higher number of defects and give rise to multiple stripping peaks in stepped surfaces. Using these results, the differences of the behavior between single crystal electrodes and nanoparticles can be rationalized. In spite of the fact that nanoparticles have small ordered domains, the presence of sites in which the reaction is initiated, equivalent to the site in the lower part of the step, is almost negligible, and thus, the oxidation reaction takes place at higher potential values than in stepped surfaces with similar domain size. Also the effect of nanoparticle agglomeration in the oxidation has been rationalized.
Patrocinador/es: This work has been financially supported by the MINECO-FEDER (projects CTQ 2013-44083-P and CTQ2013-48280-C3-3-R) and Generalitat Valenciana (project PROMETEO/2014/013). M.J.S. Farias acknowledges financial support from the CAPES – Brasil (PNPD).
URI: http://hdl.handle.net/10045/67735
ISSN: 1572-6657 (Print) | 1873-2569 (Online)
DOI: 10.1016/j.jelechem.2016.09.031
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 Elsevier B.V.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.jelechem.2016.09.031
Aparece en las colecciones:INV - LEQA - Artículos de Revistas
INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Aran_etal_JElectrChem_final.pdfVersión final (acceso restringido)1,81 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2017_Aran_etal_JElectrChem_accepted.pdfAccepted Manuscript (acceso abierto)953,59 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.