Understanding CO oxidation reaction on platinum nanoparticles

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/67735
Información del item - Informació de l'item - Item information
Title: Understanding CO oxidation reaction on platinum nanoparticles
Authors: Arán-Ais, Rosa M. | Vidal-Iglesias, Francisco J. | Farias, Manuel J.S. | Solla-Gullón, José | Montiel, Vicente | Herrero, Enrique | Feliu, Juan M.
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Platinum | Nanoparticles | CO oxidation | Preferential shape
Knowledge Area: Química Física
Issue Date: 15-May-2017
Publisher: Elsevier
Citation: Journal of Electroanalytical Chemistry. 2017, 793: 126-136. doi:10.1016/j.jelechem.2016.09.031
Abstract: To understand how the CO oxidation reaction proceeds on nanoparticles, which have complex surface structures, the behavior of the nanoparticles has to be related to that of single crystal electrodes with a well-defined surface structure. However, the direct extrapolation of the results is not possible because significant differences in the behavior between both type of surfaces are observed. In single crystal electrodes in both acidic and alkaline media, the reaction initiates on defects on the CO adlayer. These defects can be already present on the surface, as surface defects or steps, or generated during the formation of the CO adlayer. In the case of steps, the oxidation starts on the lower part of the step. The only difference between the reaction behavior between acidic and alkaline solutions is the lower mobility of the CO in alkaline solutions, which generates adlayers with higher number of defects and give rise to multiple stripping peaks in stepped surfaces. Using these results, the differences of the behavior between single crystal electrodes and nanoparticles can be rationalized. In spite of the fact that nanoparticles have small ordered domains, the presence of sites in which the reaction is initiated, equivalent to the site in the lower part of the step, is almost negligible, and thus, the oxidation reaction takes place at higher potential values than in stepped surfaces with similar domain size. Also the effect of nanoparticle agglomeration in the oxidation has been rationalized.
Sponsor: This work has been financially supported by the MINECO-FEDER (projects CTQ 2013-44083-P and CTQ2013-48280-C3-3-R) and Generalitat Valenciana (project PROMETEO/2014/013). M.J.S. Farias acknowledges financial support from the CAPES – Brasil (PNPD).
URI: http://hdl.handle.net/10045/67735
ISSN: 1572-6657 (Print) | 1873-2569 (Online)
DOI: 10.1016/j.jelechem.2016.09.031
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 Elsevier B.V.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.jelechem.2016.09.031
Appears in Collections:INV - LEQA - Artículos de Revistas
INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Aran_etal_JElectrChem_final.pdfVersión final (acceso restringido)1,81 MBAdobe PDFOpen    Request a copy
Thumbnail2017_Aran_etal_JElectrChem_accepted.pdfAccepted Manuscript (acceso abierto)953,59 kBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.