Single-virus genomics reveals hidden cosmopolitan and abundant viruses

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Single-virus genomics reveals hidden cosmopolitan and abundant viruses
Autor/es: Martinez-Hernandez, Francisco | Fornas, Oscar | Lluesma Gómez, Mónica | Bolduc, Benjamin | Cruz Peña, Maria Jose de la | Martínez Martínez, Joaquín | Anton, Josefa | Gasol, Josep M. | Rosselli, Riccardo | Rodriguez-Valera, Francisco | Sullivan, Matthew B. | Acinas, Silvia G. | Martinez-Garcia, Manuel
Grupo/s de investigación o GITE: Ecología Microbiana Molecular
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología
Palabras clave: Single-virus genomics | Viruses
Área/s de conocimiento: Fisiología | Microbiología
Fecha de publicación: 23-jun-2017
Editor: Macmillan Publishers
Cita bibliográfica: Nature Communications. 2017, 8:15892. doi:10.1038/ncomms15892
Resumen: Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and that microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies.
Patrocinador/es: This work has been supported by Spanish Ministry of Economy and Competitiveness (refs CGL2013-40564-R and SAF2013-49267-EXP), Generalitat Valenciana (ref. ACOM/2015/133 and ACIF/2015/332), the USA National Science Foundation (OCE#1536989), the USA Department of Energy (DE-SC0010580), and Gordon and Betty Moore Foundation (grants 3305, 3790, and 5334). The Ohio Supercomputer supported gene-sharing network high performance compute time. Work at BBMO was funded by Spanish project CT2015-70340-R. Work at CRG, BIST and UPF was in part funded by the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’ and the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Maria de Maeztu 2016-2019’.
ISSN: 2041-1723
DOI: 10.1038/ncomms15892
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: The Author(s) 2017. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - EMM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Martinez-Hernandez_etal_NatureComms.pdf3,3 MBAdobe PDFAbrir Vista previa

Este ítem está licenciado bajo Licencia Creative Commons Creative Commons