An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/66568
Información del item - Informació de l'item - Item information
Título: An Aza-Fused π-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide
Autor/es: Briega-Martos, Valentín | Ferre-Vilaplana, Adolfo | Peña, Alejandro de la | Segura, José L. | Zamora, Félix | Feliu, Juan M. | Herrero, Enrique
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrocatalyst | Oxygen reduction | Hydrogen peroxide production | Microporous framework | Conjugated covalent porous polymer
Área/s de conocimiento: Química Física
Fecha de publicación: 2017
Editor: American Chemical Society
Cita bibliográfica: ACS Catalysis. 2017, 7(2): 1015-1024. doi:10.1021/acscatal.6b03043
Resumen: In order to produce hydrogen peroxide in small-scale electrochemical plants, selective catalysts for the oxygen reduction reaction (ORR) toward the desired species are required. Here, we report about the synthesis, characterization, ORR electrochemical behavior, and reaction mechanism of an aza-fused π-conjugated microporous polymer, which presents high selectivity toward hydrogen peroxide. It was synthesized by polycondensation of 1,2,4,5-benzenetetramine tetrahydrochloride and triquinoyl octahydrate. A cobalt-modified version of the material was also prepared by a simple postsynthesis treatment with a Co(II) salt. The characterization of the material is consistent with the formation of a conductive robust porous covalent laminar polyaza structure. The ORR properties of these catalysts were investigated using rotating disk and rotating disk–ring arrangements. The results indicate that hydrogen peroxide is almost exclusively produced at very low overpotentials on these materials. Density functional theory calculations provide key elements to understand the reaction mechanism. It is found that, at the relevant potential for the reaction, half of the nitrogen atoms of the material would be hydrogenated. This hydrogenation process would destabilize some carbon atoms in the lattice and would provide segregated charge. On the destabilized carbon atoms, molecular oxygen would be chemisorbed with the aid of charge transferred from the hydrogenated nitrogen atoms and solvation effects. Due to the low destabilization of the carbon sites, the resulting molecular oxygen chemisorbed state, which would have the characteristics of a superoxide species, would be only slightly stable, promoting the formation of hydrogen peroxide.
Patrocinador/es: This work has been financially supported by the MCINN-FEDER (projects CTQ 2016-76221-P, MAT2013-46753-C2-1-P, and MAT2014-52305-P) and Generalitat Valenciana (project PROMETEO/2014/013).
URI: http://hdl.handle.net/10045/66568
ISSN: 2155-5435
DOI: 10.1021/acscatal.6b03043
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 American Chemical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1021/acscatal.6b03043
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Briega_etal_ACSCatal_final.pdfVersión final (acceso restringido)1,93 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2017_Briega_etal_ACSCatal_preprint.pdfPreprint (acceso abierto)1,84 MBAdobe PDFAbrir Vista previa
Thumbnail2017_Briega_etal_ACSCatal_SI.pdfSupporting Information1,53 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.