Catalyzed Particulate Filter Regeneration by Platinum Versus Noble Metal-Free Catalysts: From Principles to Real Application

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Catalyzed Particulate Filter Regeneration by Platinum Versus Noble Metal-Free Catalysts: From Principles to Real Application
Authors: Giménez-Mañogil, Javier | Quiles-Díaz, Susana | Guillén Hurtado, Noelia | Garcia-Garcia, Avelina
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Particulate filter | Ceria | Soot combustion | NOx | Noble metal-free catalysts | Platinum
Knowledge Area: Química Inorgánica
Issue Date: Feb-2017
Publisher: Springer Science+Business Media New York
Citation: Topics in Catalysis. 2017, 60(1): 2-12. doi:10.1007/s11244-016-0730-8
Abstract: In this short review, results from previous investigations by our group regarding 2 % Cu/ceria–zirconia catalyst incorporated onto a lab-scale diesel particulate filter (DPF) were compiled and compared to recent results concerning commercial platinum/alumina incorporated onto a DPF, in order to explore their catalytic regeneration. Their behavior was compared to the corresponding powder catalytic activity. In this sense, NO oxidation to NO2 and NO/NO2 recycling efficiency on the soot combustion catalytic activity were investigated for different catalyst/soot ratios. The active phase incorporated onto the DPFs was checked to be mechanically stable and reproducible in terms of amounts. Results show that catalytic activity towards NO oxidation to NO2 remains essentially constant after several cycles for both DPF-supported catalysts. It was also found that soot combustion rates presented by Pt/alumina-DPF (in 1:3 soot/catalyst ratio) and CuO/ceria–zirconia-DPF (in 1:5 soot/catalyst ratio) are very similar. It reveals that this noble metal-free catalyst can be competitive compared to a commercial platinum-based one, regarding soot combustion reaction in a particulate filter.
Sponsor: The authors gratefully acknowledge the Financial Support of Generalitat Valenciana (PROMETEOII/2014/010 Project), the Spanish Ministry of Economy and Competitiveness (CTQ2015-64801-R project, UE-FEDER funding). S.Q.D. wishes to thank VIDI-University of Alicante her Master Thesis Grant.
ISSN: 1022-5528 (Print) | 1572-9028 (Online)
DOI: 10.1007/s11244-016-0730-8
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Springer Science+Business Media New York 2016. The final publication is available at Springer via
Peer Review: si
Publisher version:
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Gimenez_etal_TopCatal_final.pdfVersión final (acceso restringido)2,13 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.