Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/66395
Información del item - Informació de l'item - Item information
Title: Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry
Authors: Vidal, Lorena | Ahmadi, Mazaher | Fernández Martínez, Elena | Madrakian, Tayyebeh | Canals, Antonio
Research Group/s: Espectroscopía Atómica-Masas y Química Analítica en Condiciones Extremas
Center, Department or Service: Universidad de Alicante. Departamento de Química Analítica, Nutrición y Bromatología | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Solid-phase microextraction | Chlorobenzenes | Magnetic graphene oxide | Magnetic headspace adsorptive extraction | Gas chromatography-mass spectrometry | Water samples
Knowledge Area: Nutrición y Bromatología | Química Analítica
Issue Date: 8-Jun-2017
Publisher: Elsevier
Citation: Analytica Chimica Acta. 2017, 971: 40-47. doi:10.1016/j.aca.2017.04.002
Abstract: This study presents a new, user-friendly, cost-effective and portable headspace solid-phase extraction technique based on graphene oxide decorated with iron oxide magnetic nanoparticles as sorbent, located on one end of a small neodymium magnet. Hence, the new headspace solid-phase extraction technique has been called Magnetic Headspace Adsorptive Extraction (Mag-HSAE). In order to assess Mag-HSAE technique applicability to model analytes, some chlorobenzenes were extracted from water samples prior to gas chromatography-mass spectrometry determination. A multivariate approach was employed to optimize the experimental parameters affecting Mag-HSAE. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; extraction time, 30 min; sorbent amount, 10 mg; stirring speed, 1500 rpm, and ionic strength, non-significant), obtaining a linear response from 0.5 to 100 ng L−1 for 1,3-DCB, 1,4-DCB, 1,2-DCB, 1,3,5-TCB, 1,2,4-TCB and 1,2,3-TCB; from 0.5 to 75 ng L−1 for 1,2,4,5-TeCB, and PeCB; and from 1 to 75 ng L−1 for 1,2,3,4-TeCB. The repeatability of the proposed method was evaluated at 10 ng L−1 and 50 ng L−1 spiking levels, and coefficients of variation ranged between 1.5 and 9.5% (n = 5). Limits of detection values were found between 93 and 301 pg L−1. Finally, tap, mineral and effluent water were selected as real water samples to assess method applicability. Relative recoveries varied between 86 and 110% showing negligible matrix effects.
Sponsor: The authors would like to thank the Spanish Ministry of Science and Innovation (project n. CTQ2011-23968), Generalitat Valenciana (project n. PROMETEO/2013/038) for the financial support. M. Ahmadi would like to thank Iranian Ministry of Science, Research, and Technology for the travel grant. E. Fernández thanks Spanish Ministry of Education for her FPU grant (FPU13/03125).
URI: http://hdl.handle.net/10045/66395
ISSN: 0003-2670 (Print) | 1873-4324 (Online)
DOI: 10.1016/j.aca.2017.04.002
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Elsevier B.V.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.aca.2017.04.002
Appears in Collections:INV - SP-BG - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Vidal_etal_AnalytChimActa_final.pdfVersión final (acceso restringido)1,09 MBAdobe PDFOpen    Request a copy
Thumbnail2017_Vidal_etal_AnalytChimActa_revised.pdfVersión revisada (acceso abierto)1,29 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.