Shale Water Desalination: Multistage membrane distillation considering different configurations and heat integration

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/65247
Información del item - Informació de l'item - Item information
Título: Shale Water Desalination: Multistage membrane distillation considering different configurations and heat integration
Autor/es: Carrero-Parreño, Alba | Onishi, Viviani C. | Ruiz-Femenia, Rubén | Salcedo Díaz, Raquel | Caballero, José A. | Reyes-Labarta, Juan A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Desalination | Membrane | Distillation | Shale | Flowback | Produced | Water
Área/s de conocimiento: Ingeniería Química
Fecha de creación: 13-nov-2016
Fecha de publicación: 2-abr-2017
Editor: Elsevier
Cita bibliográfica: 3rd International Conference on Desalination using Membrane Technology. Paper-MDES2017_0196
Resumen: This work introduces a simultaneous synthesis of membrane distillation systems with heat exchanger networks (HENs) for desalinating shale gas flowback and produce water. The direct contact and vacuum membrane configurations are the best options for desalination. Moreover, multistage membrane distillation systems usually have higher efficiencies than single-stages processes. For this reason, two different mathematical models for synthetizing multistage direct contact membrane distillation (MSDCMD) and multistage vacuum membrane distillation (MSVMD) are developed and optimized to achieve zero liquid discharge (ZLD) conditions. To this aim, brine discharges are considered to be near to the salt saturation conditions. The multi-stage superstructures are implemented in GAMS and optimized by SBB solver. The mathematical model is formulated via generalized disjunctive programming (GDP) and mixed-integer nonlinear programming (MINLP), to minimize the total annualized cost.
Patrocinador/es: This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 640979.
URI: http://hdl.handle.net/10045/65247
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0
Revisión científica: si
Versión del editor: http://memdes2017.elseviermarketing.com/
Aparece en las colecciones:INV - CONCEPT - Comunicaciones a Congresos, Conferencias, etc.
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMDES_2017_MDwithHI.pdf518,4 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons