Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/60332
Información del item - Informació de l'item - Item information
Title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons
Authors: Borchardt, Lars | Nickel, Winfried | Casco, Mirian Elizabeth | Senkovska, Irena | Bon, Volodymyr | Wallacher, Dirk | Grimm, Nico | Krause, Simon | Silvestre-Albero, Joaquín
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Methane hydrate nucleation | Porous model carbons | Illuminating | Solid gas storage
Knowledge Area: Química Inorgánica
Issue Date: 7-Jul-2016
Publisher: Royal Society of Chemistry
Citation: Physical Chemistry Chemical Physics. 2016, 18: 20607-20614. doi:10.1039/C6CP03993F
Abstract: Methane hydrate nucleation and growth in porous model carbon materials illuminates the way towards the design of an optimized solid-based methane storage technology. High-pressure methane adsorption studies on pre-humidified carbons with well-defined and uniform porosity show that methane hydrate formation in confined nanospace can take place at relatively low pressures, even below 3 MPa CH4, depending on the pore size and the adsorption temperature. The methane hydrate nucleation and growth is highly promoted at temperatures below the water freezing point, due to the lower activation energy in ice vs. liquid water. The methane storage capacity via hydrate formation increases with an increase in the pore size up to an optimum value for the 25 nm pore size model-carbon, with a 173% improvement in the adsorption capacity as compared to the dry sample. Synchrotron X-ray powder diffraction measurements (SXRPD) confirm the formation of methane hydrates with a sI structure, in close agreement with natural hydrates. Furthermore, SXRPD data anticipate a certain contraction of the unit cell parameter for methane hydrates grown in small pores.
Sponsor: L. B. gratefully acknowledges the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) for support of the Mechanocarb project (award number 03SF0498). J. S. A. acknowledges financial support from MINECO (project MAT-2013-45008-p) and Generalitat Valenciana (PROMETEOII/2014/004). V. B. thanks the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) for financial support (project No. 05K13OD3).
URI: http://hdl.handle.net/10045/60332
ISSN: 1463-9076 (Print) | 1463-9084 (Online)
DOI: 10.1039/C6CP03993F
Language: eng
Type: info:eu-repo/semantics/article
Rights: This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Peer Review: si
Publisher version: http://dx.doi.org/10.1039/C6CP03993F
Appears in Collections:INV - LMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Borchardt_etal_PCCP.pdf3 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons