Shale gas flowback water desalination: Single vs multiple-effect evaporation with vapor recompression cycle and thermal integration

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/60270
Información del item - Informació de l'item - Item information
Título: Shale gas flowback water desalination: Single vs multiple-effect evaporation with vapor recompression cycle and thermal integration
Autor/es: Onishi, Viviani C. | Carreño-Parreño, Alba | Labarta, Juan A. | Ruiz-Femenia, Rubén | Salcedo Díaz, Raquel | Fraga, Eric S. | Caballero, José A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: Shale gas | Single-effect evaporation (SEE) | Multiple-effect evaporation (MEE) | Mechanical vapor recompression (MVR) | Thermal integration | Zero liquid discharge (ZLD)
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 17-feb-2017
Editor: Elsevier
Cita bibliográfica: Desalination. 2017, 404: 230-248. doi:10.1016/j.desal.2016.11.003
Resumen: This paper introduces a new optimization model for the single and multiple-effect evaporation (SEE/MEE) systems design, including vapor recompression cycle and thermal integration. The SEE/MEE model is specially developed for shale gas flowback water desalination. A superstructure is proposed to solve the problem, comprising several evaporation effects coupled with intermediate flashing tanks that are used to enhance thermal integration by recovering condensate vapor. Multistage equipment with intercooling is used to compress the vapor formed by flashing and evaporation. The compression cycle is driven by electricity to operate on the vapor originating from the SEE/MEE system, providing all the energy needed in the process. The mathematical model is formulated as a nonlinear programming (NLP) problem optimized under GAMS software by minimizing the total annualized cost. The SEE/MEE system application for zero liquid discharge (ZLD) is investigated by allowing brine salinity discharge near to salt saturation conditions. Additionally, sensitivity analysis is carried out to evaluate the optimal process configuration and performance under distinct feed water salinity conditions. The results highlight the potential of the proposed model to cost-effectively optimize SEE/MEE systems by producing fresh water and reducing brine discharges and associated environmental impacts.
Patrocinador/es: This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 640979. The financial support provided by the National Council for Scientific and Technological Development of Brazil (CNPq), under process No. 233953/2014-0 is also gratefully acknowledged.
URI: http://hdl.handle.net/10045/60270
ISSN: 0011-9164 (Print) | 1873-4464 (Online)
DOI: 10.1016/j.desal.2016.11.003
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.desal.2016.11.003
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas
INV - ETMyCCA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Onishi_etal_Desalination.pdf2,27 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons