Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems
Autor/es: Onishi, Viviani C. | Carreño-Parreño, Alba | Reyes-Labarta, Juan A. | Fraga, Eric S. | Caballero, José A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Shale gas | Zero-liquid discharge (ZLD) | Single-effect evaporation (SEE) | Multiple-effect evaporation (MEE) | Mechanical vapor recompression (MVR) | Energy recovery
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 1-ene-2017
Editor: Elsevier
Cita bibliográfica: Journal of Cleaner Production. 2017, 140(Part 3): 1399-1414. doi:10.1016/j.jclepro.2016.10.012
Resumen: Shale gas has recently emerged as a promising energy source to face the increasing global demand. This paper introduces a new rigorous optimization model for the simultaneous synthesis of single and multiple-effect evaporation (SEE/MEE) systems, considering mechanical vapor recompression (MVR) and energy recovery. The proposed model has been especially developed for the desalination of high-salinity produced water from shale gas hydraulic fracturing (“fracking”). Its main objective is to enhance the system energy efficiency through the reduction of brine discharges. Therefore, the outflow brine salinity should be near to salt saturation conditions to achieve zero liquid discharge (ZLD). The multiple-effect superstructure is comprised by several effects of horizontal-tube falling film evaporation. Due to the inclusion of the electric-driven mechanical compressor, no other external energy source is needed in the SEE/MEE system. A more accurate process design is attained through the calculation of the overall heat transfer coefficients in function of the individual coefficients for the falling boiling film and vapor condensation. Additionally, the SEE/MEE-MVR model allows the estimation of the major geometrical characteristics of the evaporation system. The non-linear programming (NLP)-based model is optimized using the CONOPT solver under GAMS by the minimization of the process total annualized cost. Thermal analysis is carried out to evaluate the effects of the feed salinity and geometrical parameters on system heat transfer performance. The results highlight the ability of the developed model to rigorously design SEE/MEE-MVR systems by improving their cost-effectively and reaching ZLD conditions.
Patrocinador/es: This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 640979. The authors also acknowledge financial support from the National Council for Scientific and Technological Development of Brazil (CNPq), under process No. 233953/2014-0.
ISSN: 0959-6526 (Print) | 1879-1786 (Online)
DOI: 10.1016/j.jclepro.2016.10.012
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Onishi_etal_JCleanProd.pdf2,27 MBAdobe PDFAbrir Vista previa

Este ítem está licenciado bajo Licencia Creative Commons Creative Commons