Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative study

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/57839
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorMateriales Avanzadoses
dc.contributor.authorMadani, S. Hadi-
dc.contributor.authorHu, Cheng-
dc.contributor.authorSilvestre Albero, Ana-
dc.contributor.authorBiggs, Mark J.-
dc.contributor.authorRodríguez Reinoso, Francisco-
dc.contributor.authorPendleton, Phillip-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Inorgánicaes
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Materialeses
dc.date.accessioned2016-09-13T09:25:55Z-
dc.date.available2016-09-13T09:25:55Z-
dc.date.issued2016-01-
dc.identifier.citationCarbon. 2016, 96: 1106-1113. doi:10.1016/j.carbon.2015.10.072es
dc.identifier.issn0008-6223 (Print)-
dc.identifier.issn1873-3891 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/57839-
dc.description.abstractWe compare the pore size distribution of a well-characterized activated carbon derived from model-dependent, adsorption integral equation (AIE) methods with those from model-independent, immersion calorimetry and isosteric heat analyses. The AIE approach applied to nitrogen gave a mean pore width of 0.57 nm; the CO2 distribution exhibited wider dispersion. Spherical model application to CO2 and diffusion limitations for nitrogen and argon were proposed as primary reasons for inconsistency. Immersion enthalpy revealed a sharp decrease in available area equivalent to a cut-off due to molecular exclusion when the accessible surface was assessed against probe kinetic diameter. Mean pore width was identified as 0.58 ± 0.02 nm, endorsing the underlying assumptions for the nitrogen-based AIE approach. A comparison of the zero-coverage isosteric heat of adsorption for various non-polar adsorptives by the porous test sample was compared with the same adsorptives in contact with a non-porous reference adsorbent, leading to an energy ratio or adsorption enhancement factor. A linear relationship between the energy ratio and probe kinetic diameter indicated a primary pore size at 0.59 nm. The advantage of this enthalpy, model-independent methods over AIE were due to no assumptions regarding probe molecular shape, and no assumptions for pore shape and/or connectivity.es
dc.description.sponsorshipThe authors thank the Australian Research Council discovery program (DP110101293) for funding support and S.H.M also thanks the University of South Australia for a postgraduate research scholarship and travel support to Alicante. C.H. acknowledges a joint scholarship provided by China Scholarship Council (CSC) and the University of Adelaide.es
dc.languageenges
dc.publisherElsevieres
dc.rights© 2015 Elsevier Ltd.es
dc.subjectPore size distributiones
dc.subjectActivated carbones
dc.subjectAdsorption isothermses
dc.subjectImmersion calorimetryes
dc.subjectIsosteric heatses
dc.subject.otherQuímica Inorgánicaes
dc.titlePore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats: A comparative studyes
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedsies
dc.identifier.doi10.1016/j.carbon.2015.10.072-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.carbon.2015.10.072es
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Madani_etal_Carbon_final.pdfVersión final (acceso restringido)880,22 kBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.