Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media
Autor/es: Francés, Jorge | Bleda, Sergio | Gallego, Sergi | Fernández Fernández, Roberto | Neipp, Cristian | Pascual, Inmaculada | Márquez, Andrés
Grupo/s de investigación o GITE: Holografía y Procesado Óptico
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: Nonlinear Optics | Kerr effect | Finite-difference Time-domain method | Periodic media
Área/s de conocimiento: Óptica | Física Aplicada | Teoría de la Señal y Comunicaciones
Fecha de creación: 1-jun-2016
Fecha de publicación: 21-jun-2016
Editor: Universidade do Porto
Cita bibliográfica: FRANCÉS, Jorge, et al. "Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media". Abstracts Booklet. Recent Trends in Modern Optics. Porto, 21-23 June 2016
Resumen: The application of nonlinear materials in photonic crystals and periodic optical media in general has been extensively investigated in literature but currently numerical simulation, which is necessary in the design of sophisticated photonics devices, is very challenging. The Split-Field Finite-Difference Time-Domain (SF- FDTD) approach is a formulation of FDTD that is specially tailored to efficiently incorporate the periodicity in the algorithm and provides a natural framework for simulating periodic optical media under oblique angle of incidence. Here, this formalism has been adapted for covering second- and third- order nonlinear materials with a tensorial formulation of both nonlinear susceptibilities. Even the method only considers a single period of the structure, the addition of nonlinear materials sets some issues that must be addressed. Firstly, the nonlinear dependence of the electromagnetic field, which is included due to the nonlinear polarization term, must be solved in each time step by means of an additional fixed-point iterative process. Hence, the computational intensity of the method is dramatically affected. Secondly, considering the tensorial behaviour of the second and third-order nonlinear susceptibilities establishes a challenge in terms of computational resources. In order to avoid these drawbacks, High- Performance Computing (HPC) solutions based on GPU and Intel Xeon Phi have been considered. The SF-FDTD method here presented gives the possibility of accurately analyse phenomena such as the second harmonic generation in second-order nonlinear materials, shifting of resonances in resonant gratings due to Kerr effect, bistability effects and all- optical behaviour in two-dimensionally binary gratings with nonlinear material filling the pillars.
Patrocinador/es: This work was supported by the “Ministerio de Economía y Competitividad” (projects FIS2014-56100-C2-1-P and FIS2015-66570-P) and by the “Generalitat Valenciana” of Spain (projects PROMETEOII/2015/015, ISIC/2012/013 and GV/2014/076).
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: © Universidade do Porto
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRecent-TrendsModernOptics-Oporto-June-2016.pdf336,66 kBAdobe PDFAbrir Vista previa

Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.