Previous Numerical Studies with Deformable Ballast on Body Impacts against Building Edge Protection Systems

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/57207
Información del item - Informació de l'item - Item information
Title: Previous Numerical Studies with Deformable Ballast on Body Impacts against Building Edge Protection Systems
Authors: Pomares Torres, Juan Carlos | Irles Más, Ramón | Carrión Jackson, Elena | González Sánchez, Antonio | Segovia-Eulogio, Enrique-Gonzalo
Research Group/s: Grupo de Ensayo, Simulación y Modelización de Estructuras (GRESMES) | Acústica Aplicada
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil
Keywords: Accelerations | Deformable ballast | Edge protection system | EN 13374 | Falling person | Falls | Impact factor | Impacts | Straight supports
Knowledge Area: Mecánica de Medios Continuos y Teoría de Estructuras
Issue Date: 2016
Publisher: WIT Press
Citation: International Journal of Computational Methods and Experimental Measurements. 2016, 4(3): 280-287. doi:10.2495/CMEM-V4-N3-280-287
Abstract: Recent studies with numerical models regarding edge protection systems (EPS), class C according to standard EN 13374, showed that some requirements are inadequate for human safety. This problem mainly arises when a person is injured by falling directly against the EPS supports. To analyse this subject, three series of numerical models, in accordance with EN 13374, have been produced. The paper describes these studies, which have been carried out using straight supports, different weight ballasts and also a deformable ballast. In the first series, impacts against straight supports have been analyzed and a standard EN 13374 ballast has been used. These first studies showed too many high impact factors on the ballast. The obtained values are absolutely inadequate and dangerous to the integrity of the human body. The second series was conducted to know how different weights and shapes of ballast affect the maximum accelerations suffered by the human body. Finally, in the third series, a more deformable ballast has been used to simulate impacts of workers against straight supports, nearest to the real behaviour of a human body. Results confirm and measure an excessive impact factor suffered by the falling person. Mainly in the first series, with direct impacts of standard ballast against straight supports, acceleration values have been generated that could seriously injure the body or even could kill workers. The second series showed that different weights and shapes – cylinder or sphere – of ballast affect the acceleration values calculated. Finally, in the third series, the deformable ballast has achieved results truer than previous studies with the more rigid ballast established by EN 13374.
URI: http://hdl.handle.net/10045/57207
ISSN: 2046-0546 (Print) | 2046-0554 (Online)
DOI: 10.2495/CMEM-V4-N3-280-287
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 WIT Press
Peer Review: si
Publisher version: http://dx.doi.org/10.2495/CMEM-V4-N3-280-287
Appears in Collections:INV - GRESMES - Artículos de Revistas
INV - Acústica Aplicada - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Pomares_etal_IntJCompMethExpMeas.pdf1,18 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.