Delineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of population

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/56685
Información del item - Informació de l'item - Item information
Title: Delineating zones to increase geographical detail in individual response data files: An application to the Spanish 2011 Census of population
Authors: Martínez Bernabeu, Lucas | Casado-Díaz, José M.
Research Group/s: Territorio y Movilidad. Mercados de Trabajo y Vivienda
Center, Department or Service: Universidad de Alicante. Departamento de Análisis Económico Aplicado | Universidad de Alicante. Instituto Interuniversitario de Economía Internacional
Keywords: Labour market areas | Census | Microdata | Regionalisation | Clustering | Evolutionary computation | Spain | Regional science | Regional economics
Knowledge Area: Economía Aplicada
Issue Date: 8-Jul-2016
Publisher: De Gruyter
Citation: Moravian Geographical Reports. 2016, 24(2): 26-36. doi:10.1515/mgr-2016-0008
Abstract: Due to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.
Sponsor: This work was supported by the Spanish Ministry of Economy and Competitiveness (grant number CSO2014-55780-C3-2-P, National R&D&i Plan 2013-2016).
URI: http://hdl.handle.net/10045/56685
ISSN: 1210-8812 | 2199-6202 (Online)
DOI: 10.1515/mgr-2016-0008
Language: eng
Type: info:eu-repo/semantics/article
Rights: This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License
Peer Review: si
Publisher version: http://dx.doi.org/10.1515/mgr-2016-0008
Appears in Collections:INV - TEYMO - Artículos de Revistas / Journal Articles

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Martinez_Casado_MoravianGeoRep.pdf3,12 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.