Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice–Boltzmann simulations, experiments and models

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/55888
Información del item - Informació de l'item - Item information
Título: Surface growth for molten silicon infiltration into carbon millimeter-sized channels: Lattice–Boltzmann simulations, experiments and models
Autor/es: Sergi, Danilo | Camarano, Antonio | Molina Jordá, José Miguel | Ortona, Alberto | Narciso, Javier
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Liquid silicon infiltration | Millimeter-sized channels | Reaction-formed SiC morphology | Lattice–Boltzmann simulations for surface growth
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: jun-2016
Editor: World Scientific Publishing
Cita bibliográfica: International Journal of Modern Physics C. 2016, 27(6): 1650062. doi:10.1142/S0129183116500625
Resumen: The process of liquid silicon infiltration is investigated for channels with radii from 0.25 to 0.75 [mm] drilled in compact carbon preforms. The advantage of this setup is that the study of the phenomenon results to be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann simulations. The experiments give clear evidence that the growth of silicon carbide proceeds in two different stages and basic mechanisms are highlighted. Lattice-Boltzmann simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing to implement the resistance from chemical reaction in Darcy law is also proposed.
Patrocinador/es: The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 280464, project ”High-frequency ELectro-Magnetic technologies for advanced processing of ceramic matrix composites and graphite expansion” (HELM).
URI: http://hdl.handle.net/10045/55888
ISSN: 0129-1831 (Print) | 1793-6586 (Online)
DOI: 10.1142/S0129183116500625
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Preprint of an article published in International Journal of Modern Physics C. 2016, 27(6): 1650062. doi:10.1142/S0129183116500625 © World Scientific Publishing Company http://www.worldscientific.com/worldscinet/ijmpc
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1142/S0129183116500625
Aparece en las colecciones:INV - LMA - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Sergi_etal_IntJModPhysC_preprint.pdfPreprint (acceso abierto)3,45 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.