Are pulsars born with a hidden magnetic field?

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/55090
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorAstrofísica Relativistaes_ES
dc.contributor.authorTorres-Forné, Alejandro-
dc.contributor.authorCerdá-Durán, Pablo-
dc.contributor.authorPons, José A.-
dc.contributor.authorFont, José A.-
dc.contributor.otherUniversidad de Alicante. Departamento de Física Aplicadaes_ES
dc.date.accessioned2016-05-18T09:51:34Z-
dc.date.available2016-05-18T09:51:34Z-
dc.date.issued2016-03-11-
dc.identifier.citationMonthly Notices of the Royal Astronomical Society. 2016, 456(4): 3813-3826. doi:10.1093/mnras/stv2926es_ES
dc.identifier.issn0035-8711 (Print)-
dc.identifier.issn1365-2966 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/55090-
dc.description.abstractThe observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10−3–10−2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish MINECO grants AYA2013-40979-P and AYA2013-42184-P and by the Generalitat Valenciana (PROMETEOII-2014-069).es_ES
dc.languageenges_ES
dc.publisherOxford University Presses_ES
dc.rights© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Societyes_ES
dc.subjectStars: magnetic fieldes_ES
dc.subjectStars: neutrones_ES
dc.subjectPulsars: generales_ES
dc.subject.otherAstronomía y Astrofísicaes_ES
dc.titleAre pulsars born with a hidden magnetic field?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1093/mnras/stv2926-
dc.relation.publisherversionhttp://dx.doi.org/10.1093/mnras/stv2926es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//AYA2013-40979-P-
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//AYA2013-42184-P-
Aparece en las colecciones:INV - Astrofísica Relativista - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Torres-Forne_etal_MNRAS.pdf1,69 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.