Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/53175
Información del item - Informació de l'item - Item information
Título: Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes
Autor/es: Ferre-Vilaplana, Adolfo | Perales-Rondón, Juan V. | Feliu, Juan M. | Herrero, Enrique
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Formic acid oxidation | Platinum | Adatom modification | Activation energy | DFT
Área/s de conocimiento: Química Física
Fecha de publicación: 2015
Editor: American Chemical Society
Cita bibliográfica: ACS Catalysis. 2015, 5(2): 645-654. doi:10.1021/cs501729j
Resumen: The engineered search for new catalysts requires a deep knowledge about reaction mechanisms. Here, with the support of a combination of computational and experimental results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by adatoms of the p block is elucidated for the first time. DFT calculations reveal that some adatoms, such as Bi and Pb, have positive partial charge when they are adsorbed on the bare surface, whereas others, such as Se and S, remain virtually neutral. When the partial charge is correlated with previously reported experimental results for the formic acid oxidation reaction, it is found that the partial positive charge is directly related to the increase in catalytic activity of the modified surface. Further, it is obtained that such a positive partial charge is directly proportional to the electronegativity difference between the adatom and Pt. Thus, the electronegativity difference can be used as an effective descriptor for the expected electrocatalytic activity. This partial positive charge on the adatom drives the formic acid oxidation reaction, since it favors the formation and adsorption of formate on the adatom. Once adsorbed, the neighboring platinum atoms assist in the C–H bond cleavage. Finally, it is found that most of the steps involved in the proposed oxidation mechanism are barrierless, which implies a significant diminution of the activation barriers in comparison to that of the unmodified Pt(111) electrode. This diminution in the activation barrier has been experimentally corroborated for the Bi–Pt(111) electrode, supporting the proposed mechanism.
Patrocinador/es: This work has been financially supported by the MINECO (Spain) (project CTQ2013-44083-P) and Generalitat Valenciana (project PROMETEOII/2014/013).
URI: http://hdl.handle.net/10045/53175
ISSN: 2155-5435
DOI: 10.1021/cs501729j
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2014 American Chemical Society
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1021/cs501729j
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2015_Ferre_etal_ACS-Catal_final.pdfVersión final (acceso restringido)3,09 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2015_Ferre_etal_ACS-Catal_rev.pdfVersión revisada (acceso abierto)596,67 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.