Infinitesimal Hartman-Grobman Theorem in Dimension Three

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/49908
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorGrupo de Álgebra y Geometría (GAG)es
dc.contributorSistemas Dinámicos y Estadística (SISDINEST)es
dc.contributor.authorAlonso-González, Clementa-
dc.contributor.otherUniversidad de Alicante. Departamento de Matemáticases
dc.date.accessioned2015-10-01T12:41:09Z-
dc.date.available2015-10-01T12:41:09Z-
dc.date.issued2015-
dc.identifier.citationAnais da Academia Brasileira de Ciências. 2015, 87(3): 1499-1503. doi:10.1590/0001-3765201520140094es
dc.identifier.issn0001-3765-
dc.identifier.issn1678-2690 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/49908-
dc.description.abstractIn this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.es
dc.description.sponsorshipThis research was partially supported by the Spanish Government (MTM2010-15471 (subprogram MTM)).es
dc.languageenges
dc.publisherAcademia Brasileira de Ciênciases
dc.rightsCreative Commons Attribution Licensees
dc.subjectVector fieldses
dc.subjectSingularitieses
dc.subjectTopological typees
dc.subjectNewton polyhedrones
dc.subjectPrincipal partes
dc.subject.otherGeometría y Topologíaes
dc.titleInfinitesimal Hartman-Grobman Theorem in Dimension Threees
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedsies
dc.identifier.doi10.1590/0001-3765201520140094-
dc.relation.publisherversionhttp://dx.doi.org/10.1590/0001-3765201520140094es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
Appears in Collections:INV - GAG - Artículos de Revistas
INV - SISDINEST - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2015_Alonso_Anais-ABC.pdf463,86 kBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons