Steady-state self-oscillations and chaotic behavior of a controlled electromechanical device by using the first Lyapunov value and the Melnikov theory

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/47386
Información del item - Informació de l'item - Item information
Título: Steady-state self-oscillations and chaotic behavior of a controlled electromechanical device by using the first Lyapunov value and the Melnikov theory
Autor/es: Pérez Polo, Manuel | Pérez Molina, Manuel
Grupo/s de investigación o GITE: Grupo de Control, Ingeniería de Sistemas y Transmisión de Datos | Holografía y Procesado Óptico
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Regular and chaotic oscillations | Controlled electromechanical transducer
Área/s de conocimiento: Ingeniería de Sistemas y Automática | Física Aplicada
Fecha de publicación: 14-feb-2014
Editor: Elsevier
Cita bibliográfica: Journal of Sound and Vibration. 2014, 333(4): 1163-1181. doi:10.1016/j.jsv.2013.10.021
Resumen: In this paper regular and chaotic oscillations in a controlled electromechanical transducer are investigated. The nonlinear control laws are defined by an electric tension excitation and an external force applied to the mobile piece of the transducer. The paper shows that an Andronov–Poincaré–Hopf bifurcation appears as long as adequate parameters are chosen for the nonlinear control laws. The stability of the weak focuses associated to such bifurcation is examined according to the sign of the first Lyapunov value, showing that chaotic behavior can arise when the first Lyapunov value is varied harmonically. The appearance of a homoclinic orbit is investigated assuming an approximated model for the device. On the basis of the parametric equations of the homoclinic orbit and the presence of harmonic disturbances on the platform, it is demonstrated that chaotic oscillations can also appear, and they have been examined by means of the Melnikov theory. Chaotic behavior is corroborated by means of the sensitive dependence, Lyapunov exponents and power spectral density, and it is applied to drive the transducer mobile piece to a predefined set point assuming that noise due to the measurement process can appear in the control signals. The steady-state error associated to such random noise is eliminated by adding a PI linear controller to the control force. Numerical simulations are used to corroborate the analytical results.
Patrocinador/es: This work was supported by the “Generalitat Valenciana” (Spain) under Project GV/2012/099 and by “Ministerio de Ciencia e Innovación” (Spain) under Project FIS2011-29803-C02-01.
URI: http://hdl.handle.net/10045/47386
ISSN: 0022-460X (Print) | 1095-8568 (Online)
DOI: 10.1016/j.jsv.2013.10.021
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2013 Elsevier Ltd.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.jsv.2013.10.021
Aparece en las colecciones:INV - GCIST - Artículos de Revistas
INV - GHPO - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Perez-Polo_Perez-Molina_JSV_final.pdfVersión final (acceso restringido)4,49 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2014_Perez-Polo_Perez-Molina_JSV_revised.pdfVersión revisada (acceso abierto)3,21 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.