Detecting implicit expressions of affect in text using EmotiNet and its extensions

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/46339
Información del item - Informació de l'item - Item information
Títol: Detecting implicit expressions of affect in text using EmotiNet and its extensions
Autors: Balahur Dobrescu, Alexandra | Hermida Carbonell, Jesús María | Montoyo, Andres | Muñoz, Rafael
Grups d'investigació o GITE: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Centre, Departament o Servei: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Paraules clau: EmotiNet | Emotion detection | Emotion ontology | Knowledge base | Appraisal Theories | Self-reported affect
Àrees de coneixement: Lenguajes y Sistemas Informáticos
Data de publicació: de novembre-2013
Editor: Elsevier
Citació bibliogràfica: Data & Knowledge Engineering. 2013, 88: 113-125. doi:10.1016/j.datak.2013.08.002
Resum: In the past years, an important volume of research in Natural Language Processing has concentrated on the development of automatic systems to deal with affect in text. The different approaches considered dealt mostly with explicit expressions of emotion, at word level. Nevertheless, expressions of emotion are often implicit, inferrable from situations that have an affective meaning. Dealing with this phenomenon requires automatic systems to have “knowledge” on the situation, and the concepts it describes and their interaction, to be able to “judge” it, in the same manner as a person would. This necessity motivated us to develop the EmotiNet knowledge base — a resource for the detection of emotion from text based on commonsense knowledge on concepts, their interaction and their affective consequence. In this article, we briefly present the process undergone to build EmotiNet and subsequently propose methods to extend the knowledge it contains. We further on analyse the performance of implicit affect detection using this resource. We compare the results obtained with EmotiNet to the use of alternative methods for affect detection. Following the evaluations, we conclude that the structure and content of EmotiNet are appropriate to address the automatic treatment of implicitly expressed affect, that the knowledge it contains can be easily extended and that overall, methods employing EmotiNet obtain better results than traditional emotion detection approaches.
Patrocinadors: The work of the authors affiliated to the Department of Software and Computing Systems at the University of Alicante has been supported by the Spanish Ministry of Science and Innovation (grant no. TIN2009-13391-C04-01), by the Spanish Ministry of Education under the FPU Program (AP2007-03076), and by the Valencian Ministry of Education (grant no. PROMETEO/2009/119 and ACOMP/2010/288).
URI: http://hdl.handle.net/10045/46339
ISSN: 0169-023X (Print) | 1872-6933 (Online)
DOI: 10.1016/j.datak.2013.08.002
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2013 Elsevier B.V.
Revisió científica: si
Versió de l'editor: http://dx.doi.org/10.1016/j.datak.2013.08.002
Apareix a la col·lecció: INV - GPLSI - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2013_Balahur_etal_D&KE_final.pdfVersión final (acceso restringido)1,08 MBAdobe PDFObrir     Sol·licitar una còpia


Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.