Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/46086
Información del item - Informació de l'item - Item information
Títol: Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides
Autors: Wang, Hai | Barceló Gisbert, Irene | Lana-Villarreal, Teresa | Gómez, Roberto | Bonn, Mischa | Cánovas, Enrique
Grups d'investigació o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centre, Departament o Servei: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Paraules clau: Quantum dot stoichiometry | SILAR | PbS quantum dots | Epitaxial growth | Electron transfer | THz spectroscopy | Quantum dot-sensitized solar cells
Àrees de coneixement: Química Física
Data de publicació: 19-de setembre-2014
Editor: American Chemical Society
Citació bibliogràfica: Nano Letters. 2014, 14(10): 5780-5786. doi:10.1021/nl5026634
Resum: We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.
Patrocinadors: This work has been financially supported by the Max Planck Society. H.W. is a recipient of a fellowship of the Graduate School Materials Science in Mainz (MAINZ) funded through the German Research Foundation in the Excellence Initiative (GSC 266). I.B. is grateful to the Materials Science Doctoral program of the Universitat d’Alacant (UA) for the award of a travel grant. The UA team acknowledges the financial support from the Spanish Ministry of Economy and Competitiveness through project MAT2012-37676 (FONDOS FEDER).
URI: http://hdl.handle.net/10045/46086
ISSN: 1530-6984 (Print) | 1530-6992 (Online)
DOI: 10.1021/nl5026634
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2014 American Chemical Society
Revisió científica: si
Versió de l'editor: http://dx.doi.org/10.1021/nl5026634
Apareix a la col·lecció: INV - GFES - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2014_Wang_etal_NanoLetters_final.pdfVersión final (acceso restringido)2,69 MBAdobe PDFObrir     Sol·licitar una còpia


Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.