Handling of Uncertainty in Life Cycle Inventory by Correlated Multivariate Lognormal Distributions: Application to the Design of Supply Chain Networks

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/46076
Información del item - Informació de l'item - Item information
Título: Handling of Uncertainty in Life Cycle Inventory by Correlated Multivariate Lognormal Distributions: Application to the Design of Supply Chain Networks
Autor/es: Reyes-Labarta, Juan A. | Salcedo Díaz, Raquel | Ruiz-Femenia, Rubén | Guillén Gosálbez, Gonzalo | Caballero, José A.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT) | Estudios de Transferencia de Materia y Control de Calidad de Aguas (ETMyCCA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química
Palabras clave: Lognormal distribution | Life cycle assessment | Multi-objective optimization | Sustainable supply chain | Risk management
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 2014
Editor: Elsevier
Cita bibliográfica: Computer Aided Chemical Engineering. 2014, 33: 1075-1080. doi:10.1016/B978-0-444-63455-9.50014-3
Resumen: In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Patrocinador/es: The authors wish to acknowledge support from the Spanish Ministry of Science and Innovation (CTQ2012-37039-C02-02).
URI: http://hdl.handle.net/10045/46076
ISBN: 978-0-444-63434-4
ISSN: 1570-7946
DOI: 10.1016/B978-0-444-63455-9.50014-3
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2014 Elsevier B.V.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/B978-0-444-63455-9.50014-3
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas
INV - ETMyCCA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Reyes_etal_CACE_final.pdfVersión final (acceso restringido)1,86 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2014_Reyes_etal_CACE_preprint.pdfPreprint (acceso abierto)283,01 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.