Detection and mapping of burnt areas from time series of MODIS-derived NDVI data in a Mediterranean region

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/45575
Información del item - Informació de l'item - Item information
Título: Detection and mapping of burnt areas from time series of MODIS-derived NDVI data in a Mediterranean region
Autor/es: García Ferrández, Miguel Antonio | Alloza, José A. | Mayor, Angeles G. | Bautista, Susana | Rodríguez, Francisco
Grupo/s de investigación o GITE: Análisis de Datos y Modelización de Procesos en Biología y Geociencias | Gestión de Ecosistemas y de la Biodiversidad (GEB)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Matemática Aplicada | Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Palabras clave: Burnt area mapping | Mediterranean Basin | MODIS-NDVI | Remote sensing | Wildfire
Área/s de conocimiento: Matemática Aplicada | Ecología
Fecha de publicación: mar-2014
Editor: Versita
Cita bibliográfica: Central European Journal of Geosciences. 2014, 6(1): 112-120. doi:10.2478/s13533-012-0167-y
Resumen: Moderate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.
Patrocinador/es: This work was supported by the research projects FEEDBACK (CGL2011-30515- C02-01), funded by the Spanish Ministry of Innovation and Science, CASCADE (GA283068), funded by European Commission under the Seventh Framework Program, and GVPRE/2008/310, funded by the Valencia Regional Government (Generalitat Valenciana).
URI: http://hdl.handle.net/10045/45575
ISSN: 2081-9900 (Print) | 1896-1517 (Online)
DOI: 10.2478/s13533-012-0167-y
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2014 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)
Revisión científica: si
Versión del editor: http://dx.doi.org/10.2478/s13533-012-0167-y
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - GEB - Artículos de Revistas
INV - ADMPBG - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Garcia_etal_CentEurJGeosci.pdf1,32 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons