Ultrasonic tissue characterization for monitoring nanostructured TiO2 induced bone growth

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/4473
Información del item - Informació de l'item - Item information
Título: Ultrasonic tissue characterization for monitoring nanostructured TiO2 induced bone growth
Autor/es: Garcia-Martinez, Javier | Rus Carlborg, Guillermo
Grupo/s de investigación o GITE: Nanotecnología Molecular
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Granada. Departamento de Mecánica de Estructuras
Palabras clave: Inverse problem | Elastography | Ultrasonics | Tissue characterization | Implant | Nanostructured | Titania | Ultrasonic monitoring
Área/s de conocimiento: Química Inorgánica
Fecha de creación: 2006
Fecha de publicación: may-2007
Editor: IOP Publishing
Cita bibliográfica: GARCÍA MARTÍNEZ, Javier; RUS CARLBORG, Guillermo. "Ultrasonic tissue characterization for monitoring nanostructured TiO2 induced bone growth". Physics in Medicine and Biology. Vol. 52, No. 12 (21 June 2007). ISSN 0031-9155, pp. 3531-3547
Resumen: The use of bioactive nanostructured TiO2 has recently been proposed for improving orthopaedic implant adhesion due to its improved biocompatibility with bone, since it induces: (i) osteoblast function, (ii) apatite nucleation and (iii) protein adsorption. The present work focuses on a non-ionizing radiation emitting technique for quantifying in real time the improvement in terms of mechanical properties of the surrounding bone due to the presence of the nanostructured TiO2 prepared by controlled precipitation and acid ageing. The mechanical strength is the ultimate goal of a bone implant and is directly related to the elastic moduli. Ultrasonics are high frequency mechanical waves and are therefore suited for characterizing elastic moduli. As opposed to echographic techniques, which are not correlated to elastic properties and are not able to penetrate bone, a low frequency ultrasonic transmission test is proposed, in which a P-wave is transmitted through the specimen and recorded. The problem is posed as an inverse problem, in which the unknown is a set of parameters that describe the mechanical constants of the sequence of layers. A finite element numerical model that depends on these parameters is used to predict the transformation of the waveform and compare to the measurement. The parameters that best describe the real tissue are obtained by minimizing the discrepancy between the real and numerically predicted waveforms. A sensitivity study to the uncertainties of the model is performed for establishing the feasibility of using this technique to investigate the macroscopic effect on bone growth of nanostructured TiO2 and its beneficial effect on implant adhesion.
Patrocinador/es: Generalitat Valenciana (grant INV05-10)
URI: http://hdl.handle.net/10045/4473
ISSN: 0031-9155 (Print) | 1361-6560 (Online)
DOI: 10.1088/0031-9155/52/12/013
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Copyright © Institute of Physics and IOP Publishing Limited
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1088/0031-9155/52/12/013
Aparece en las colecciones:INV - NANOMOL - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGuillermo.pdfVersión final (acceso restringido)1,23 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail232548Rev13Apr07.pdfBorrador revisado (acceso libre)914,45 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.