Difference schemes for time-dependent heat conduction models with delay

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/44394
Información del item - Informació de l'item - Item information
Title: Difference schemes for time-dependent heat conduction models with delay
Authors: Castro, María Ángeles | Rodríguez, Francisco | Cabrera Sánchez, Jesús | Martín Alustiza, José Antonio
Research Group/s: Análisis de Datos y Modelización de Procesos en Biología y Geociencias | Ecuaciones Diferenciales con Retardo
Center, Department or Service: Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Non-Fourier heat conduction | Finite differences | Convergence and stability | 65M06 | 65M12 | 65Q20 | 35R10 | 80M20
Knowledge Area: Matemática Aplicada
Issue Date: 2014
Publisher: Taylor & Francis
Citation: International Journal of Computer Mathematics. 2014, 91(1): 53-61. doi:10.1080/00207160.2013.779371
Abstract: Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.
URI: http://hdl.handle.net/10045/44394
ISSN: 0020-7160 (Print) | 1029-0265 (Online)
DOI: 10.1080/00207160.2013.779371
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1080/00207160.2013.779371
Appears in Collections:INV - ADMPBG - Artículos de Revistas
INV - EDR - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Castro_etal_IJCM_final.pdfVersión final (acceso restringido)176,43 kBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.