Analyzing the commercial activities of a street network by ranking their nodes: a case study in Murcia, Spain

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/44391
Información del item - Informació de l'item - Item information
Título: Analyzing the commercial activities of a street network by ranking their nodes: a case study in Murcia, Spain
Autor/es: Agryzkov, Taras | Oliver, Jose L. | Tortosa, Leandro | Vicent, Jose F.
Grupo/s de investigación o GITE: Análisis y Visualización de Datos en Redes (ANVIDA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial | Universidad de Alicante. Departamento de Expresión Gráfica y Cartografía
Palabras clave: Street network | PageRank vector | Spatial analysis | Data analysis | Network visualization
Área/s de conocimiento: Ciencia de la Computación e Inteligencia Artificial | Composición Arquitectónica
Fecha de publicación: 2014
Editor: Taylor & Francis
Cita bibliográfica: International Journal of Geographical Information Science. 2014, 28(3): 479-495. doi:10.1080/13658816.2013.854370
Resumen: Urban researchers and planners are often interested in understanding how economic activities are distributed in urban regions, what forces influence their special pattern and how urban structure and functions are mutually dependent. In this paper, we want to show how an algorithm for ranking the nodes in a network can be used to understand and visualize certain commercial activities of a city. The first part of the method consists of collecting real information about different types of commercial activities at each location in the urban network of the city of Murcia, Spain. Four clearly differentiated commercial activities are studied, such as restaurants and bars, shops, banks and supermarkets or department stores, but obviously we can study other. The information collected is then quantified by means of a data matrix, which is used as the basis for the implementation of a PageRank algorithm which produces a ranking of all the nodes in the network, according to their significance within it. Finally, we visualize the resulting classification using a colour scale that helps us to represent the business network.
Patrocinador/es: This work has been partially supported by Generalitat Valenciana grant number GV2012-111.
URI: http://hdl.handle.net/10045/44391
ISSN: 1365-8816 (Print) | 1365-8824 (Online)
DOI: 10.1080/13658816.2013.854370
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2013 Taylor & Francis
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1080/13658816.2013.854370
Aparece en las colecciones:INV - ANVIDA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2014_Agryzkov_etal_IJGIS_final.pdfVersión final (acceso restringido)1,06 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.