Languages associated with saturated formations of groups

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/41401
Información del item - Informació de l'item - Item information
Title: Languages associated with saturated formations of groups
Authors: Ballester Bolinches, Adolfo | Pin, Jean-Éric | Soler Escrivà, Xaro
Research Group/s: Grupo de Álgebra y Geometría (GAG)
Center, Department or Service: Universidad de Alicante. Departamento de Estadística e Investigación Operativa
Keywords: Group formation | Regular language | Finite automata | Finite monoid
Knowledge Area: Álgebra
Issue Date: 9-Apr-2013
Publisher: De Gruyter
Citation: Forum Mathematicum. 2013, 0(0): 35 p. doi:10.1515/forum-2012-0161
Abstract: In a previous paper, the authors have shown that Eilenberg's variety theorem can be extended to more general structures, called formations. In this paper, we give a general method to describe the languages corresponding to saturated formations of groups, which are widely studied in group theory. We recover in this way a number of known results about the languages corresponding to the classes of nilpotent groups, soluble groups and supersoluble groups. Our method also applies to new examples, like the class of groups having a Sylow tower.
Sponsor: The authors are supported by Proyecto MTM2010-19938-C03-01 from MICINN (Spain). The first author acknowledges support from MEC. The second author is supported by the project ANR 2010 BLAN 0202 02 FREC. The third author was supported by the Grant PAID-02-09 from Universitat Politècnica de València.
URI: http://hdl.handle.net/10045/41401
ISSN: 0933-7741 (Print) | 1435-5337 (Online)
DOI: 10.1515/forum-2012-0161
Language: eng
Type: info:eu-repo/semantics/article
Rights: © de Gruyter 2013
Peer Review: si
Publisher version: http://dx.doi.org/10.1515/forum-2012-0161
Appears in Collections:INV - GAG - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2013_Ballester_etal_ForumMath.pdfVersión revisada (acceso abierto)248,11 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.