A Vision-Based System for Intelligent Monitoring: Human Behaviour Analysis and Privacy by Context

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/37208
Información del item - Informació de l'item - Item information
Title: A Vision-Based System for Intelligent Monitoring: Human Behaviour Analysis and Privacy by Context
Authors: Chaaraoui, Alexandros Andre | Padilla López, José Ramón | Ferrandez-Pastor, Francisco-Javier | Nieto-Hidalgo, Mario | Flórez-Revuelta, Francisco
Research Group/s: Informática Industrial y Redes de Computadores | Domótica y Ambientes Inteligentes
Center, Department or Service: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Keywords: Intelligent monitoring | Vision system | Ambient-assisted living | Human behaviour analysis | Human action recognition | Multi-view recognition | Telecare monitoring | Privacy preservation | Privacy by context
Knowledge Area: Arquitectura y Tecnología de Computadores
Issue Date: 20-May-2014
Publisher: MDPI
Citation: Chaaraoui AA, Padilla-López JR, Ferrández-Pastor FJ, Nieto-Hidalgo M, Flórez-Revuelta F. A Vision-Based System for Intelligent Monitoring: Human Behaviour Analysis and Privacy by Context. Sensors. 2014; 14(5):8895-8925. doi:10.3390/s140508895
Abstract: Due to progress and demographic change, society is facing a crucial challenge related to increased life expectancy and a higher number of people in situations of dependency. As a consequence, there exists a significant demand for support systems for personal autonomy. This article outlines the vision@home project, whose goal is to extend independent living at home for elderly and impaired people, providing care and safety services by means of vision-based monitoring. Different kinds of ambient-assisted living services are supported, from the detection of home accidents, to telecare services. In this contribution, the specification of the system is presented, and novel contributions are made regarding human behaviour analysis and privacy protection. By means of a multi-view setup of cameras, people’s behaviour is recognised based on human action recognition. For this purpose, a weighted feature fusion scheme is proposed to learn from multiple views. In order to protect the right to privacy of the inhabitants when a remote connection occurs, a privacy-by-context method is proposed. The experimental results of the behaviour recognition method show an outstanding performance, as well as support for multi-view scenarios and real-time execution, which are required in order to provide the proposed services.
Sponsor: This work has been partially supported by the Spanish Ministry of Science and Innovation under project ‘Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar’ (TIN2010-20510-C04-02). Alexandros Andre Chaaraoui and José Ramón Padilla-López acknowledge financial support by the Conselleria d’Educació, Formació i Ocupació of the Generalitat Valenciana (fellowships ACIF/2011/160 and ACIF/2012/064, respectively).
URI: http://hdl.handle.net/10045/37208
ISSN: 1424-8220
DOI: 10.3390/s140508895
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/)
Peer Review: si
Publisher version: http://dx.doi.org/10.3390/s140508895
Appears in Collections:INV - DAI - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Chaaraoui_etal_Sensors.pdf2,84 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons