Enrichment of the Phenotypic and Genotypic Data Warehouse analysis using Question Answering systems to facilitate the decision making process in cereal breeding programs

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/37202
Información del item - Informació de l'item - Item information
Title: Enrichment of the Phenotypic and Genotypic Data Warehouse analysis using Question Answering systems to facilitate the decision making process in cereal breeding programs
Authors: Peral, Jesús | Ferrández, Antonio | Gregorio Medrano, Elisa de | Trujillo, Juan | Maté, Alejandro | Ferrández, Luis José
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI) | Lucentia
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Keywords: Business intelligence | Data warehouse | Question answering | Information extraction | Information retrieval | Genetic information
Knowledge Area: Lenguajes y Sistemas Informáticos
Issue Date: 15-May-2014
Publisher: Elsevier
Citation: Ecological Informatics. 2014, Accepted Manuscript. doi:10.1016/j.ecoinf.2014.05.003
Abstract: Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.
Sponsor: This paper has been partially supported by the MESOLAP (TIN2010-14860) and GEODAS-BI (TIN2012-37493-C03-03) projects from the Spanish Ministry of Education and Competitivity. Alejandro Maté is funded by the Generalitat Valenciana under an ACIF grant (ACIF/2010/298).
URI: http://hdl.handle.net/10045/37202
ISSN: 1574-9541 (Print) | 1878-0512 (Online)
DOI: 10.1016/j.ecoinf.2014.05.003
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.ecoinf.2014.05.003
Appears in Collections:INV - GPLSI - Artículos de Revistas
INV - LUCENTIA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Peral_etal_Ecological-Informatics.pdfAccepted Manuscript (acceso abierto)1,2 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.