Pulsar timing irregularities and the imprint of magnetic field evolution

Empreu sempre aquest identificador per citar o enllaçar aquest ítem http://hdl.handle.net/10045/33789
Información del item - Informació de l'item - Item information
Títol: Pulsar timing irregularities and the imprint of magnetic field evolution
Autors: Pons, José A. | Viganò, Daniele | Geppert, Ulrich
Grups d'investigació o GITE: Astrofísica Relativista
Centre, Departament o Servei: Universidad de Alicante. Departamento de Física Aplicada
Paraules clau: Pulsars: general | Stars: neutron | Stars: magnetic field | Stars: evolution
Àrees de coneixement: Astronomía y Astrofísica
Data de publicació: 18-d’octubre-2012
Editor: EDP Sciences
Citació bibliogràfica: Astronomy & Astrophysics. 2012, 547: A9. doi:10.1051/0004-6361/201220091
Resum: Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.
Patrocinadors: This research was supported by the grants AYA 2010-21097-C03-02 and ACOMP/2012/135. D.V. is supported by a fellowship from the Prometeo program for research groups of excellence of the Generalitat Valenciana (Prometeo/2009/103).
URI: http://hdl.handle.net/10045/33789
ISSN: 0004-6361 (Print) | 1432-0746 (Online)
DOI: 10.1051/0004-6361/201220091
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © ESO, 2012
Revisió científica: si
Versió de l'editor: http://dx.doi.org/10.1051/0004-6361/201220091
Apareix a la col·lecció: INV - Astrofísica Relativista - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2012_Pons_Vigano_Geppert_A&A.pdf517,11 kBAdobe PDFObrir Vista prèvia


Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.