Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton

Please use this identifier to cite or link to this item:
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorEcología Microbiana Moleculares
dc.contributor.authorGarcia, Sarahi L.-
dc.contributor.authorMcMahon, Katherine D.-
dc.contributor.authorMartinez-Garcia, Manuel-
dc.contributor.authorSrivastava, Abhishek-
dc.contributor.authorSczyrba, Alexander-
dc.contributor.authorStepanauskas, Ramunas-
dc.contributor.authorGrossart, Hans-Peter-
dc.contributor.authorWoyke, Tanja-
dc.contributor.authorWarnecke, Falk-
dc.contributor.otherUniversidad de Alicante. Departamento de Fisiología, Genética y Microbiologíaes
dc.identifier.citationThe ISME Journal (2013) 7, 137–147; doi:10.1038/ismej.2012.86es
dc.identifier.issn1751-7362 (Print)-
dc.identifier.issn1751-7370 (Online)-
dc.description.abstractActinobacteria within the acI lineage are often numerically dominating in freshwater ecosystems, where they can account for >50% of total bacteria in the surface water. However, they remain uncultured to date. We thus set out to use single-cell genomics to gain insights into their genetic make-up, with the aim of learning about their physiology and ecological niche. A representative from the highly abundant acI-B1 group was selected for shotgun genomic sequencing. We obtained a draft genomic sequence in 75 larger contigs (sum=1.16 Mb), with an unusually low genomic G+C mol% (~42%). Actinobacteria core gene analysis suggests an almost complete genome recovery. We found that the acI-B1 cell had a small genome, with a rather low percentage of genes having no predicted functions (~15%) as compared with other cultured and genome-sequenced microbial species. Our metabolic reconstruction hints at a facultative aerobe microorganism with many transporters and enzymes for pentoses utilization (for example, xylose). We also found an actinorhodopsin gene that may contribute to energy conservation under unfavorable conditions. This project reveals the metabolic potential of a member of the global abundant freshwater
dc.description.sponsorshipThis work was supported by NSF grants DEB-841933 and OCE-821374 to RS. HPG and Abhishek Srivastava were supported by a grant given by the German Science foundation (DFG GR 1540/17-1). SLG and FW thank JSMC for funding and support. We also thank Drs Rohit Ghai and Francisco Rodriguez-Valera at the Universidad Miguel Hernandez, Alicante, Spain, for access to custom perl scripts. We thank Todd Miller for collecting the lake water sample used to recover the SAG sequence. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. KDM acknowledges funding from the United States National Science Foundation Microbial Observatories program (MCB-0702395), the Long Term Ecological Research program (NTL-LTER DEB-0822700), a CAREER award (CBET-0738309) and the Swedish Wenner-Gren
dc.publisherNature Publishing Groupes
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit
dc.subjectFreshwater Actinobacteriaes
dc.subjectMetabolic potentiales
dc.subjectSingle-cell genomicses
dc.titleMetabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplanktones
Appears in Collections:INV - EMM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2013_Garcia_etal_ISMEJournal.pdfArticle552,65 kBAdobe PDFOpen Preview
ismej201286x1.docSupplementary Information512 kBMicrosoft WordOpen Preview

This item is licensed under a Creative Commons License Creative Commons