Development of a unified FDTD-FEM library for electromagnetic analysis with CPU and GPU computing

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/28161
Información del item - Informació de l'item - Item information
Title: Development of a unified FDTD-FEM library for electromagnetic analysis with CPU and GPU computing
Authors: Francés, Jorge | Bleda, Sergio | Gallego, Sergi | Neipp, Cristian | Márquez, Andrés | Pascual, Inmaculada | Beléndez, Augusto
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Keywords: Electromagnetic analysis | Finite-difference time-domain | Finite element method | Electrostatic potential | Thin film filters | Graphics processing units | Optical wavelengths
Knowledge Area: Óptica | Física Aplicada
Date Created: Sep-2011
Issue Date: 1-Apr-2013
Publisher: Springer Science+Business Media
Citation: FRANCÉS, Jorge, et al. “Development of a unified FDTD-FEM library for electromagnetic analysis with CPU and GPU computing”. Journal of Supercomputing. Vol. 64, No. 1 (Apr. 2013). ISSN 0920-8542, pp. 28-37
Abstract: The present paper describes an optimized C++ library for the study of electromagnetics. The implementation is based on the Finite-Difference Time-Domain method for transient analysis, and the Finite Element Method for electrostatics. Both methods share the same core and are optimized for CPU and GPU computing. To illustrate its running, FEM method is applied for solving Laplace’s equation analyzing the relation between surface curvature and electrostatic potential of a long cylindrical conductor, whereas FDTD is applied for analyzing Thin Film Filters at optical wavelengths. Furthermore, a comparison of the performance of both CPU and GPU versions is analyzed as a function of the grid size simulation. This approach allows the study of a wide range of electromagnetic problems taking advantage of the benefits of each numerical method and the computing power of the modern CPUs and GPUs.
Sponsor: This work was supported by the “Ministerio de Economía y Competitividad” of Spain under projects FIS2011-29803-C02-01, FIS2011-29803-C02-02 and by the “Generalitat Valenciana” of Spain under projects PROMETEO/2011/021 and ISIC/2012/013.
URI: http://hdl.handle.net/10045/28161
ISSN: 0920-8542 (Print) | 1573-0484 (Online)
DOI: 10.1007/s11227-012-0803-9
Language: eng
Type: info:eu-repo/semantics/article
Rights: The original publication is available at www.springerlink.com
Peer Review: si
Publisher version: http://dx.doi.org/10.1007/s11227-012-0803-9
Appears in Collections:INV - GHPO - Artículos de Revistas
INV - Acústica Aplicada - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailJ_Supercomputing_v64_p28_2013.pdfVersión final (acceso restringido)608,53 kBAdobe PDFOpen    Request a copy
ThumbnailJScmp-SIssue-CMMSE-2011.pdfVersión revisada (acceso abierto)479,24 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.