Constructive analytic solutions of mixed problems for the bidimensional diffusion equation with delay

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/2772
Información del item - Informació de l'item - Item information
Title: Constructive analytic solutions of mixed problems for the bidimensional diffusion equation with delay
Authors: Escolano Cerdán, Julio | Rodríguez, Francisco | Vives Maciá, Francisco | Martín Alustiza, José Antonio
Research Group/s: Ecuaciones Diferenciales con Retardo
Center, Department or Service: Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Diffusion equation with delay | Series solution | Separation of variables | A priori error bounds
Knowledge Area: Matemática Aplicada
Issue Date: 4-Nov-2007
Abstract: The aim of this work is to obtain constructive analytic solutions of mixed problems for the bidimensional diffusion equation with delay. A separation of variables method is used to develop an exact theoretical series solution, which can be truncated to obtain a continuous numerical solution with prescribed accuracy in bounded domains.
Description: Trabajo presentado en el Primer Congreso Hispano-Francés de Matemáticas, celebrado en Zaragoza, del 9 al 13 de julio del 2007.
Sponsor: This work is part of the project Partial differential equations with delay: optimization of numerical resolution strategies and aplications in the modelling of the population dynamics of bark beetles affecting forests in the Valencia region, funded by Generalitat Valenciana (GV06/207). We thank the University of Alicante for financial support to the Delay Differential Equations research group.
URI: http://hdl.handle.net/10045/2772
Language: eng
Type: Other
Peer Review: no
Appears in Collections:INV - EDR - Comunicaciones a Congresos, Conferencias, etc.
INV - ADMPBG - Comunicaciones a Congresos, Conferencias, etc.
INV - SCO - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailPoster Julio.pdf210,83 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.