Energy loss of protons in carbon nanotubes: experiments and calculations

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/25441
Información del item - Informació de l'item - Item information
Title: Energy loss of protons in carbon nanotubes: experiments and calculations
Authors: Kyriakou, Ioanna | Celedón, Carlos | Segura, Rodrigo | Emfietzoglou, Dimitris | Vargas, Patricio | Valdés, Jorge E. | Abril, Isabel | Denton Zanello, Cristian D. | Kostarelos, Kostas | García Molina, Rafael
Research Group/s: Interacción de Partículas Cargadas con la Materia
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Energy-loss function | Dielectric formalism | Carbon nanotubes | Energy loss | Stopping power | Proton beams
Knowledge Area: Física Aplicada
Issue Date: 26-Feb-2010
Publisher: Elsevier
Citation: KYRIAKOU, I., et al. “Energy loss of protons in carbon nanotubes: experiments and calculations”. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. Vol. 268, No. 11-12 (June 2010). ISSN 0168-583X, pp. 1781-1785
Abstract: We have studied the energy loss of protons in multi-walled carbon nanotube (MWCNT) samples, both experimentally and theoretically. The experiments were done in transmission geometry, using 6 and 10 keV proton beams, with the MWCNT targets dispersed on top of a ∼20 nm-thick holey carbon coated TEM grid (amorphous carbon film, a-C). The energy loss of protons interacting with the MWCNTs and the amorphous carbon film is obtained after analyzing the signals coming from both types of carbon allotropes. The electronic energy loss of protons is calculated using the dielectric formalism, with the target energy loss function built from optical data. Comparison of experimental and theoretical data indicates that model calculations appropriate for three-dimensional (bulk) targets substantially overestimate the energy loss to MWCNTs. In contrast, a recent parameterization of the dielectric function of MWCNTs predicts significantly lower stopping power values compared to the bulk models, which is more in line with the present experimental data when considering the additional stopping mechanisms that are effective in the keV range.
Sponsor: This work has been financially supported by the European Union FP7 ANTICARB (HEALTH-F2-2008-201587), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia, CEDENA, FONDECYT Grants 1071075, 1070224 and 7070175, Grant USMDGIP 11.04.23, CONICYT/Programa Bicentenario de Ciencia y Tecnología (CENAVA) PBCTACT027, Millennium Scientific Initiative and the Spanish Ministerio de Ciencia e Innovación (Projects FIS2006-13309-C02-01 and FIS2006-13309-C02-02). CDD thanks the Spanish Ministerio de Educación y Ciencia and Generalitat Valenciana for support under the Ramón y Cajal Program.
URI: http://hdl.handle.net/10045/25441
ISSN: 0168-583X (Print) | 1872-9584 (Online)
DOI: 10.1016/j.nimb.2010.02.073
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.nimb.2010.02.073
Appears in Collections:INV - IPCM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2010_NIMB268(2010)1781_nanotubos.pdfVersión final (acceso restringido)1,53 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.