Simulation of swift boron clusters traversing amorphous carbon foils

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/25384
Información del item - Informació de l'item - Item information
Title: Simulation of swift boron clusters traversing amorphous carbon foils
Authors: Heredia-Avalos, Santiago | Abril, Isabel | Denton Zanello, Cristian D. | García Molina, Rafael
Research Group/s: Interacción de Partículas Cargadas con la Materia
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Física Aplicada
Keywords: Swift boron clusters | Amorphous carbon foils | Stopping power
Knowledge Area: Física Aplicada
Issue Date: 9-Jan-2007
Publisher: American Physical Society
Citation: HEREDIA-AVALOS, Santiago, et al. “Simulation of swift boron clusters traversing amorphous carbon foils”. Physical Review A. Vol. 75, No. 1 (2007). ISSN 1050-2947, pp. 012901-1/8
Abstract: We use a simulation code to study the interaction of swift boron clusters (Bn+, n=2–6, 14) with amorphous carbon foils. We analyze different aspects of this interaction, such as the evolution of the cluster structure inside the target, the energy and angle distributions at the detector or the stopping power ratio. Our simulation code follows in detail the motion of the cluster fragments through the target and in the vacuum until reaching a detector, taking into account the following interactions: (i) wake force, (ii) Coulomb repulsion among cluster fragments, (iii) stopping force, and (iv) elastic scattering with the target nuclei. Electron capture and loss by each fragment is also included in the code, affecting the above-mentioned interactions. The clusters size grows inside the foil due mainly to the Coulomb explosion but this increase is less pronounced in the plane transversal to the beam direction because of the alignment effect of the wake forces. We obtain an enhancement of the stopping power ratio that increases with the projectile energy and with the number of molecular constituents. Our results agree very well with the available experimental data for the thicker foils (≳10 μg∕cm2) and are compatible (within the experimental error bars) for the thinner foils.
Sponsor: This work has been financially supported by the Spanish Ministerio de Educación y Ciencia (Contract Nos. BFM2003-04457-C02-01 and BFM2003-04457-C02-02). S.H.A. thanks the Fundación CajaMurcia for financial support and C.D.D. thanks the Spanish Ministerio de Educación y Ciencia for support under the Ramón y Cajal Program.
URI: http://hdl.handle.net/10045/25384
ISSN: 1050-2947 (Print) | 1094-1622 (Online)
DOI: 10.1103/PhysRevA.75.012901
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2007 The American Physical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1103/PhysRevA.75.012901
Appears in Collections:INV - IPCM - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2007_PhysRevA.75.012901.pdf3,61 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.