Machine learning techniques for automatic opinion detection in non-traditional textual genres

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Machine learning techniques for automatic opinion detection in non-traditional textual genres
Autor/es: Boldrini, Ester | Fernández Martínez, Javier | Gómez, José M. | Martínez-Barco, Patricio
Grupo/s de investigación o GITE: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Palabras clave: Opinion mining | Sentiment analysis | Machine learning | Blogs | Emotion annotation-scheme | Feature selection
Área/s de conocimiento: Lenguajes y Sistemas Informáticos
Fecha de publicación: 2009
Editor: WOMSA
Cita bibliográfica: BOLDRINI, Ester, et al. "Machine learning techniques for automatic opinion detection in non-traditional textual genres". En: Proceedings of the 1st Workshop on Opinion Mining and Sentiment Analysis, WOMSA09 : Seville, Spain, November 13, 2009, pp. 110-119
Resumen: This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Patrocinador/es: This paper has been supported by the next projects: “Question Answering Learning technologies in a multiLingual and Multimodal Environment (QALL-ME)” (FP6 IST-033860) and “Intelligent, Interactive and Multilingual Text Mining based on Human Language Technologies (TEXT-MESS)”(TIN2006-15265-C06-01).
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Revisión científica: si
Aparece en las colecciones:INV - GPLSI - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2009_Boldrini_WOMSA_2.pdf222,59 kBAdobe PDFAbrir Vista previa

Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.