Machine learning techniques for automatic opinion detection in non-traditional textual genres

Empreu sempre aquest identificador per citar o enllaçar aquest ítem
Información del item - Informació de l'item - Item information
Títol: Machine learning techniques for automatic opinion detection in non-traditional textual genres
Autors: Boldrini, Ester | Fernández Martínez, Javier | Gómez, José M. | Martínez-Barco, Patricio
Grups d'investigació o GITE: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Centre, Departament o Servei: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Paraules clau: Opinion mining | Sentiment analysis | Machine learning | Blogs | Emotion annotation-scheme | Feature selection
Àrees de coneixement: Lenguajes y Sistemas Informáticos
Data de publicació: 2009
Editor: WOMSA
Citació bibliogràfica: BOLDRINI, Ester, et al. "Machine learning techniques for automatic opinion detection in non-traditional textual genres". En: Proceedings of the 1st Workshop on Opinion Mining and Sentiment Analysis, WOMSA09 : Seville, Spain, November 13, 2009, pp. 110-119
Resum: This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Patrocinadors: This paper has been supported by the next projects: “Question Answering Learning technologies in a multiLingual and Multimodal Environment (QALL-ME)” (FP6 IST-033860) and “Intelligent, Interactive and Multilingual Text Mining based on Human Language Technologies (TEXT-MESS)”(TIN2006-15265-C06-01).
Idioma: eng
Tipus: info:eu-repo/semantics/conferenceObject
Revisió científica: si
Apareix a la col·lecció: INV - GPLSI - Comunicaciones a Congresos, Conferencias, etc.

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2009_Boldrini_WOMSA_2.pdf222,59 kBAdobe PDFObrir Vista prèvia

Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.