Machine learning techniques for automatic opinion detection in non-traditional textual genres

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/22537
Información del item - Informació de l'item - Item information
Title: Machine learning techniques for automatic opinion detection in non-traditional textual genres
Authors: Boldrini, Ester | Fernández Martínez, Javier | Gómez, José M. | Martínez-Barco, Patricio
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Keywords: Opinion mining | Sentiment analysis | Machine learning | Blogs | Emotion annotation-scheme | Feature selection
Knowledge Area: Lenguajes y Sistemas Informáticos
Issue Date: 2009
Publisher: WOMSA
Citation: BOLDRINI, Ester, et al. "Machine learning techniques for automatic opinion detection in non-traditional textual genres". En: Proceedings of the 1st Workshop on Opinion Mining and Sentiment Analysis, WOMSA09 : Seville, Spain, November 13, 2009, pp. 110-119
Abstract: This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Sponsor: This paper has been supported by the next projects: “Question Answering Learning technologies in a multiLingual and Multimodal Environment (QALL-ME)” (FP6 IST-033860) and “Intelligent, Interactive and Multilingual Text Mining based on Human Language Technologies (TEXT-MESS)”(TIN2006-15265-C06-01).
URI: http://hdl.handle.net/10045/22537
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Peer Review: si
Appears in Collections:INV - GPLSI - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2009_Boldrini_WOMSA_2.pdf222,59 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.