The OpAL System at NTCIR 8 MOAT

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/22483
Información del item - Informació de l'item - Item information
Title: The OpAL System at NTCIR 8 MOAT
Authors: Balahur Dobrescu, Alexandra | Boldrini, Ester | Montoyo, Andres | Martínez-Barco, Patricio
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Keywords: Opinion analysis | Sentiment analysis | Cross-lingual opinion analysis | Polarity classification
Knowledge Area: Lenguajes y Sistemas Informáticos
Issue Date: Jun-2010
Publisher: NTCIR
Citation: BALAHUR, Alexandra, et al. "The OpAL System at NTCIR 8 MOAT". En: Proceedings of NTCIR-8 Workshop Meeting [Recurso electrónico] : June 15-18, 2010, Tokyo, Japan, pp. 241-245
Abstract: The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.
Sponsor: This paper has been partially supported by Ministerio de Ciencia e Innovación - Spanish Government (grant no. TIN2009-13391-C04-01), and Conselleria d'Educación - Generalitat Valenciana (grant no. PROMETEO/2009/119 and ACOMP/2010/288).
URI: http://hdl.handle.net/10045/22483
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Peer Review: si
Appears in Collections:INV - GPLSI - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail05-NTCIR8-MOAT-BalahurA.pdfComunicación122,67 kBAdobe PDFOpen Preview
Thumbnail05-NTCIR8-MOAT-BalahurA_slides.pdfPresentación534,54 kBAdobe PDFOpen Preview
Thumbnail05-NTCIR8-MOAT-BalahurA_poster.pdfPóster1,63 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.