Comments on ‘A finite extensibility nonlinear oscillator’

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/20424
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorHolografía y Procesado Ópticoen
dc.contributorGITE - Física, Óptica y Telecomunicacionesen
dc.contributor.authorBeléndez, Augusto-
dc.contributor.authorArribas Garde, Enrique-
dc.contributor.authorFrancés, Jorge-
dc.contributor.authorPascual, Inmaculada-
dc.contributor.otherUniversidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señalen
dc.contributor.otherUniversidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologíasen
dc.contributor.otherUniversidad de Castilla-La Mancha. Departamento de Física Aplicadaen
dc.contributor.otherUniversidad de Alicante. Departamento de Óptica, Farmacología y Anatomíaen
dc.date.accessioned2012-01-18T11:30:04Z-
dc.date.available2012-01-18T11:30:04Z-
dc.date.created2011-06-
dc.date.issued2012-01-15-
dc.identifier.citationBELÉNDEZ VÁZQUEZ, Augusto, et al. "Comments on ‘A finite extensibility nonlinear oscillator’". Applied Mathematics and Computation. Vol. 218, Issue 10 (Jan. 2012). ISSN 0096-3003, pp. 6168–6175en
dc.identifier.issn0096-3003 (Print)-
dc.identifier.issn1873-5649 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/20424-
dc.description.abstractThe aim of this comment is to provide more information about the study of the dynamics of a finite extensibility nonlinear oscillator conducted by Febbo [M. Febbo, A finite extensibility nonlinear oscillator, Applied Mathematics and Computation 217 (2011) 6464–6475]. We show that the linearized harmonic balance method is not sufficiently adequate for this oscillator and that the harmonic balance method (HBM) without linearization provides better results. We also discuss what happens when the oscillation amplitude approaches 1 and why the harmonic balance method does not give optimum results. For these values of the oscillation amplitude the periodic solution becomes markedly anharmonic and is almost straight between x = +A and x = −A (with negative slope) and between x = −A and x = +A (with positive slope). Finally, a ‘heuristic’ solution is proposed which is adequate for the whole amplitude range 0 < A < 1, which is consistent with the approximate solution obtained previously for A < 0.9 using the HBM.en
dc.description.sponsorshipThe present study has been supported by the Conselleria d’Educació of the Generalitat Valenciana of Spain, under project PROMETEO/2011/021.en
dc.languageengen
dc.publisherElsevieren
dc.subjectFinite extensibilityen
dc.subjectNonlinear oscillatoren
dc.subjectApproximate solutionsen
dc.subjectHarmonic balance methoden
dc.subject.otherFísica Aplicadaen
dc.subject.otherMatemática Aplicadaen
dc.titleComments on ‘A finite extensibility nonlinear oscillator’en
dc.typeinfo:eu-repo/semantics/articleen
dc.peerreviewedsien
dc.identifier.doi10.1016/j.amc.2011.12.012-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.amc.2011.12.012en
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessen
Appears in Collections:INV - GHPO - Artículos de Revistas
GITE - FOT - Artículos de Revistas
Docencia - Ingeniería y Arquitectura - Otros
Docencia - Ciencias - Otros
INV - Acústica Aplicada - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailAMC_v218_n10_p6168_2012_accepted.pdfVersión revisada (acceso abierto)1,06 MBAdobe PDFOpen Preview
ThumbnailAMC_v218_n10_p6168_2012.pdfVersión final (acceso restringido)445,02 kBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.