Computational modeling of animal behavior in T-mazes: Insights from machine learning

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/142782
Información del item - Informació de l'item - Item information
Title: Computational modeling of animal behavior in T-mazes: Insights from machine learning
Authors: Turab, Ali | Sintunavarat, Wutiphol | Ullah, Farhan | Zaidi, Shujaat Ali | Montoyo, Andres | Nescolarde-Selva, Josué Antonio
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI) | Sistémica y Cibernética (SYC)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos | Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Animal behavior | Decision-making | T-mazes | Computational modeling | Solution | Machine learning methods
Issue Date: 11-May-2024
Publisher: Elsevier
Citation: Ecological Informatics. 2024, 81: 102639. https://doi.org/10.1016/j.ecoinf.2024.102639
Abstract: This study investigates the intricacies of animal decision-making in T-maze environments through a synergistic approach combining computational modeling and machine learning techniques. Focusing on the binary decision-making process in T-mazes, we examine how animals navigate choices between two paths. Our research employs a mathematical model tailored to the decision-making behavior of fish, offering analytical insights into their complex behavioral patterns. To complement this, we apply advanced machine learning algorithms, specifically Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and a hybrid approach involving Principal Component Analysis (PCA) for dimensionality reduction followed by SVM for classification to analyze behavioral data from zebrafish and rats. The above techniques result in high predictive accuracies, approximately 98.07% for zebrafish and 98.15% for rats, underscoring the efficacy of computational methods in decoding animal behavior in controlled experiments. This study not only deepens our understanding of animal cognitive processes but also showcases the pivotal role of computational modeling and machine learning in elucidating the dynamics of behavioral science.
URI: http://hdl.handle.net/10045/142782
ISSN: 1574-9541 (Print) | 1878-0512 (Online)
DOI: 10.1016/j.ecoinf.2024.102639
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.1016/j.ecoinf.2024.102639
Appears in Collections:INV - GPLSI - Artículos de Revistas
INV - SYC - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailTurab_etal_2024_EcologicalInformatics.pdf5,36 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.