Designing porthole aluminium extrusion dies on the basis of eXplainable Artificial Intelligence

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Designing porthole aluminium extrusion dies on the basis of eXplainable Artificial Intelligence
Autor/es: Llorca-Schenk, Juan | Rico-Juan, Juan Ramón | Sanchez-Lozano, Miguel
Grupo/s de investigación o GITE: Diseño en Ingeniería y Desarrollo Tecnológico (DIDET) | Reconocimiento de Formas e Inteligencia Artificial
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Expresión Gráfica, Composición y Proyectos | Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Palabras clave: Aluminium extrusion | Machine learning | Die design | Explainable machine learning | Hollow profile | Porthole
Fecha de publicación: 9-mar-2023
Editor: Elsevier
Cita bibliográfica: Expert Systems with Applications. 2023, 222: 119808.
Resumen: This paper shows the development of a tool with which to solve the most critical aspect of the porthole die design problem using a predictive model based on machine learning (ML). The model relies on a large amount of geometrical data regarding successful porthole die designs, information on which was obtained thanks to a collaboration with a leading extrusion company. In all cases, the dies were made of H-13 hot work steel and the billet material was 6063 aluminium alloy. The predictive model was chosen from a series of probes with different algorithms belonging to various ML families, which were applied to the analysis of geometrical data corresponding to 596 ports from 88 first trial dies. Algorithms based on the generation of multiple decision trees together with the boosting technique obtained the most promising results, the best by far being the CatBoost algorithm. The explainability of this model is based on a post-hoc approach using the SHAP (SHapley Additive exPlanations) tool. The results obtained with this ML-based model are notably better than those of a previous model based on linear regression as regards both the R2 metric and the results obtained with the application examples. An additional practical advantage is its explainability, which is a great help when deciding the best way in which to adjust an initial design to the predictive model. This ML-based model is, therefore, an optimal means to integrate the experience and know-how accumulated through many designs over time in order to apply it to new designs. It will also provide an aid in generating the starting point for the design of high-difficulty dies, in order to minimise the number of FEM (finite element method) simulation/correction iterations required until an optimal solution is achieved. It is not aimed to eliminate FEM simulation from the design tasks, but rather to help improve and accelerate the whole process of designing porthole dies. The work presented herein addresses a validation model for a very common porthole die typology: four cavity and four port per cavity dies for 6xxx series aluminium alloys. However, a wide range of research regarding the generalisation of this model or its extension to other porthole die typologies must still be carried out.
Patrocinador/es: This work was partially supported by the DIDET Group (Diseño en Ingeniería y Desarrollo Tecnológico) at the University of Alicante (UA VIGROB-032).
ISSN: 0957-4174 (Print) | 1873-6793 (Online)
DOI: 10.1016/j.eswa.2023.119808
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - DIDET - Artículos de Revistas
INV - GRFIA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLlorca-Schenk_etal_2023_ExpertSystAppl.pdf9,93 MBAdobe PDFAbrir Vista previa

Este ítem está licenciado bajo Licencia Creative Commons Creative Commons