On the oxidation of isopropanol on platinum single crystal electrodes. A detailed voltammetric and FTIR study

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/129906
Información del item - Informació de l'item - Item information
Title: On the oxidation of isopropanol on platinum single crystal electrodes. A detailed voltammetric and FTIR study
Authors: Mekazni, Dalila S. | Arán-Ais, Rosa M. | Herrero, Enrique | Feliu, Juan M.
Research Group/s: Electroquímica de Superficies
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Isopropanol oxidation | Platinum single crystal electrodes | Acetone | Kinetic measurements | OH adsorption
Issue Date: 24-Nov-2022
Publisher: Elsevier
Citation: Journal of Power Sources. 2023, 556: 232396. https://doi.org/10.1016/j.jpowsour.2022.232396
Abstract: Isopropanol oxidation is studied on platinum single crystals using electrochemical techniques and FTIR spectroscopy at different isopropanol concentrations. Isopropanol oxidation is found to be facilitated by the presence of adsorbed OH on the electrode surface, which reacts with an isopropanol molecule to yield the adsorbed alkoxide. Thus, when sulfuric acid is used as the supporting electrolyte instead of perchloric acid, oxidation currents diminish drastically since sulfate hinders OH adsorption. Kinetic measurements reveal that the chemical reaction between adsorbed OH and isopropanol is the rate-determining step in the mechanism. Voltammetric and FTIR experiments show that acetone is the major product of the reaction. On the Pt(111) surface, acetone is produced exclusively, and oxidation currents are controlled by diffusion since, on this electrode, acetone is not adsorbed and the adsorbed OH mobility is high. The adsorption of acetone-related species on the Pt(110) surface, which partially block the surface, leads to slightly lower currents. On the other hand, the Pt(100) electrode is the one showing significant rates for the C–C bond cleavage, yielding adsorbed CO and other species. Although this route is a minor path, the surface blockage by these species leads to a significant diminution of the currents.
Sponsor: This research was funded by Ministerio de Ciencia e Innovación (Spain) grant number PID2019-105653 GB-I00) and Generalitat Valenciana (Spain) grant number PROMETEO/2020/063. RMAA acknowledges the financial support from Generalitat Valenciana (CDEIGENT/2019/018). DSM thanks the Government of Argelia for the award of a doctoral fellowship to support her studies at the University of Alicante.
URI: http://hdl.handle.net/10045/129906
ISSN: 0378-7753 (Print) | 1873-2755 (Online)
DOI: 10.1016/j.jpowsour.2022.232396
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.1016/j.jpowsour.2022.232396
Appears in Collections:INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailMekazni_etal_2023_JPowerSources.pdf3,93 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons