Intelligent Ensembling of Auto-ML System Outputs for Solving Classification Problems

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/125532
Información del item - Informació de l'item - Item information
Title: Intelligent Ensembling of Auto-ML System Outputs for Solving Classification Problems
Authors: Consuegra-Ayala, Juan Pablo | Gutiérrez, Yoan | Almeida-Cruz, Yudivian | Palomar, Manuel
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos | Universidad de Alicante. Instituto Universitario de Investigación Informática
Keywords: Ensemble Methods | Auto-ML | Grammatical Evolution | Supervised Learning
Issue Date: 18-Jul-2022
Publisher: Elsevier
Citation: Information Sciences. 2022, 609: 766-780. https://doi.org/10.1016/j.ins.2022.07.061
Abstract: Automatic Machine Learning (Auto-ML) tools enable the automatic solution of real-world problems through machine learning techniques. These tools tend to be more time consuming than standard machine learning libraries, therefore, exploiting all the available resources to the full is a valuable feature. This paper presents a two-phase optimization system for solving classification problems. The system is designed to produce more robust classifiers by exploiting the different architectures that are generated while solving classification problems with Auto-ML tools, particularly AutoGOAL. In the first phase, the system follows a probabilistic strategy to find the best combination of algorithms and hyperparameters to generate a collection of base models according to certain diversity criteria; and in the second, it follows similar Auto-ML strategies to ensemble those models. The HAHA 2019 challenge corpus and the Adult dataset were used to evaluate the system. The experimental results show that: i) a better solution can be built by ensembling a subset of the already tested models; ii) the performance of ensemble methods depends on the collection of base models used; and, iii) ensuring diversity using the double-fault measure produces better results than the disagreement measure. The source code is available online for the research community.
Sponsor: This research has been partially funded by the University of Alicante and the University of Havana, the Generalitat Valenciana (Conselleria d’Educació, Investigació, Cultura i Esport) and the Spanish Government through the projects LIVING-LANG (RTI2018-094653-B-C22), INTEGER (RTI2018-094649-B-I00) and SIIA (PROMETEO/2018/089, PROMETEU/2018/089). Moreover, it has been backed by the work of both COST Actions: CA19134 - “Distributed Knowledge Graphs” and CA19142 - “Leading Platform for European Citizens, Industries, Academia and Policymakers in Media Accessibility”.
URI: http://hdl.handle.net/10045/125532
ISSN: 0020-0255 (Print) | 1872-6291 (Online)
DOI: 10.1016/j.ins.2022.07.061
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2022 Elsevier Inc.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.ins.2022.07.061
Appears in Collections:INV - GPLSI - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailConsuegra-Ayala_etal_2022_InformSci_accepted.pdfAccepted Manuscript (acceso abierto)776,39 kBAdobe PDFOpen Preview
ThumbnailConsuegra-Ayala_etal_2022_InformSci_final.pdfVersión final (acceso restringido)1,03 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.