GMcal_TieLinesVL: Graphical User Interface (GUI) for the topological analysis of GM functions for binary and ternary (isobaric or isothermal) vapor-liquid equilibrium (VLE) data (including tie-lines, derivatives, etc.)

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/122857
Información del item - Informació de l'item - Item information
Title: GMcal_TieLinesVL: Graphical User Interface (GUI) for the topological analysis of GM functions for binary and ternary (isobaric or isothermal) vapor-liquid equilibrium (VLE) data (including tie-lines, derivatives, etc.)
Authors: Labarta, Juan A. | Olaya, María del Mar | Marcilla, Antonio
Research Group/s: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Keywords: Vapor-Liquid Equilibrium | VLE | Phase Equilibria Calculation | Gibbs Energy of Mixing | NRTL | UNIQUAC | Correlation Data | Binary Systems | Tie Line | Thermodynamic Models
Knowledge Area: Ingeniería Química
Date Created: 15-Mar-2022
Issue Date: 7-Apr-2022
Abstract: Similar to previous MatLab Graphical User Interfaces (GUI’s) developed to systematically check the consistency of LLE data correlation results, GMcal_TieLinesLL(v.2.2) [http://rua.ua.es/dspace/handle/10045/51725], or Boundaries_LL_NRTL [http://hdl.handle.net/10045/121471] for the analysis of the miscibility boundaries that the NRTL model present, this third GUI, GMcal_TieLinesVL(new version: v.2), allows the analysis of experimental and calculated (isobaric or isothermal) vapor-liquid data for binary and ternary systems, in the sense presented in the following papers, to detect the necessity of considering larger dependences (of temperature or pressure, respectively) in the binary interaction parameters of the model used (e.g. NRTL model) and also to check the consistency of VLE data correlation results through the topological information contained in the Gibbs energy of mixing function: * Procedure for the correlation of normal appearance VLE data, where the classical models dramatically fail with no apparent reason. Fluid Phase Equilibria. 2019, 493, 88-101. DOI: https://doi.org/10.1016/j.fluid.2019.04.001. * The unavoidable necessity of considering temperature dependence of the liquid Gibbs energy of mixing for certain VLE data correlations. Fluid Phase Equilibria. 2018, 473, 17-31. DOI: https://doi.org/10.1016/j.fluid.2018.05.025. * Should we trust all the published LLE correlation parameters in phase equilibria? Necessity of their Assessment Prior to Publication. Fluid Phase Equilibria. 2017, 433, 243-252 (http://dx.doi.org/10.1016/j.fluid.2016.11.009). This analysis allows researchers involved in the correlation of experimental vapor-liquid equilibrium data, to visualize the behavior of the experimental data and also the consistency and quality of the results obtained in the correlation process. Related references: * GE Models and Algorithms for Condensed Phase Equilibrium Data Regression in Ternary Systems: Limitations and Proposals. The Open Thermodynamics Journal. 2011, 5, (Suppl 1-M5) 48-62 (v http://hdl.handle.net/10045/19865). * Approximate Calculation of Distillation Boundaries for Ternary Azeotropic Systems. Ind. Eng. Chem. Res. 2011, 50 (12), 7462-7466. DOI: http://dx.doi.org/10.1021/ie101873.
Sponsor: University of Alicante
URI: http://hdl.handle.net/10045/122857
Language: eng
Type: software
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International License. Only for teaching and reseacrh uses. Non-commercial.
Peer Review: no
Appears in Collections:INV - CONCEPT - Recursos Audiovisuales y Multimedia

Files in This Item:
Files in This Item:
File Description SizeFormat 
GMcal_TieLinesVL_RUA.zipGUI: GMcal_TieLinesVL6,71 MBZIP archiveOpen
ThumbnailInstructions_GM_TOPOLOGY_VLE_RUA.pdfInstructions_GMcal_TieLinesVL9,89 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons