Development of mesoporous materials from biomass ash with future applications as adsorbent materials

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/106624
Información del item - Informació de l'item - Item information
Title: Development of mesoporous materials from biomass ash with future applications as adsorbent materials
Authors: Gómez, Mauricio | Pizarro, Jaime | Castillo, Ximena | Ghisolfi, Alessio | Díaz, Carlos | Chávez, María de Lourdes | Cazorla-Amorós, Diego
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Biomass ashes | Recycling | Mesoporous materials | Functionalization | Iron adsorption
Knowledge Area: Química Inorgánica
Issue Date: Jun-2020
Publisher: Elsevier
Citation: Microporous and Mesoporous Materials. 2020, 299: 110085. doi:10.1016/j.micromeso.2020.110085
Abstract: This paper proposes the synthesis and functionalization of a low-cost mesoporous material from biomass ashes with the aim of obtaining a new adsorbent material, thereby recycling and transforming an environmental liability into a material with added value. Biomass ashes are an environmental liability, composed mainly of aluminosilicates, which have been modified with the help of a surfactant (Pluronic P-123) to model and modify its porous structure. The functionalization of the synthesized material was carried out with N, N-dimethylacetamide (DMAC) and glycine (GLY) in order to improve the adsorption capacity of the synthesized material. The materials obtained in this article were characterized by adsorption-desorption isotherms of N2 at 77 K, X-ray fluorescence (XFR), elemental analysis (EA), X-Ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoemission spectroscopy (XPS). The adsorption capacity of the synthesized matrices has been tested in batch and electrochemical systems. The surface areas obtained by the BET method were 18.49 m2 g−1 for pure ashes (CBT) and 22.84 m2 g−1 for modified ashes, and the adsorption capacities of Fe3+ ions were of about 80.49% for bare SC1, 83.27% for SC1-GLY and 95.41% for SC1-DMAC.
Sponsor: The authors acknowledge the financial support of this Project by USA1799 Vridei 091912JP_GO University of Santiago de Chile, Dicyt grant Nº 0921640PK, Conicyt Grant Nº ACT1410, Fondef Grant ID18I10229, Generalitat Valenciana (PROMETEOII/2018/076) and acknowledgements go also to USAI, Faculty of Chemistry, UNAM, and to PAIP Project No. 5000 9038, Faculty of Chemistry, UNAM. Mauricio Gomez acknowledges CONICYT (National Commission for Scientific Research and Technology) for financial support grant Nº 21150413, to the Mexican Agency of International Cooperation for Development AMEXCID, Alianza del Pacifico Scholarship.
URI: http://hdl.handle.net/10045/106624
ISSN: 1387-1811 (Print) | 1873-3093 (Online)
DOI: 10.1016/j.micromeso.2020.110085
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 Elsevier Inc.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.micromeso.2020.110085
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailGomez_etal_2020_MicroporousMesoporousMat_final.pdfVersión final (acceso restringido)1,86 MBAdobe PDFOpen    Request a copy
ThumbnailGomez_etal_2020_MicroporousMesoporousMat_accepted.pdfEmbargo 24 meses (acceso abierto: 8 febr. 2022)1,55 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.