Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/102627
Información del item - Informació de l'item - Item information
Title: Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants
Authors: Makarova, Kira S. | Wolf, Yuri I. | Iranzo, Jaime | Shmakov, Sergey A. | Alkhnbashi, Omer S. | Brouns, Stan J.J. | Charpentier, Emmanuelle | Cheng, David | Haft, Daniel H. | Horvath, Philippe | Moineau, Sylvain | Mojica, Francisco J.M. | Scott, David | Shah, Shiraz A. | Siksnys, Virginijus | Terns, Michael P. | Venclovas, Česlovas | White, Malcolm F. | Yakunin, Alexander F. | Yan, Winston | Zhang, Feng | Garrett, Roger A. | Backofen, Rolf | Oost, John van der | Barrangou, Rodolphe | Koonin, Eugene V.
Research Group/s: Microbiología Molecular
Center, Department or Service: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología
Keywords: CRISPR–Cas systems | Evolutionary classification
Knowledge Area: Microbiología
Issue Date: 19-Dec-2019
Publisher: Springer Nature
Citation: Nature Reviews Microbiology. 2020, 18: 67-83. doi:10.1038/s41579-019-0299-x
Abstract: The number and diversity of known CRISPR–Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR–Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR–Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR–Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR–Cas.
Sponsor: K.S.M., Y.I.W., J.I., S.A.S. and E.V.K. are supported through the Intramural Research Program of the US National Institutes of Health; F.J.M.M. was supported by grants BIO2014-53029-P (Ministerio de Ciencia, Innovación y Universidades, Spain), and 291815 Era- Net ANIHWA (7th Framework Programme, European Commission) and PROMETEO/2017/129 (Conselleria d'Educació, Investigació, Cultura i Esport, Generalitat Valenciana, Spain); S.A.S. was supported by RFBR (research project 18-34-00012) and a Systems Biology Fellowship from Philip Morris Sales and Marketing; S.M. was funded by funding from the Natural Sciences and Engineering Research Council of Canada (Discovery program) and holds a Tier 1 Canada Research Chair in Bacteriophages.
URI: http://hdl.handle.net/10045/102627
ISSN: 1740-1526 (Print) | 1740-1534 (Online)
DOI: 10.1038/s41579-019-0299-x
Language: eng
Type: info:eu-repo/semantics/article
Rights: © This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019
Peer Review: si
Publisher version: https://doi.org/10.1038/s41579-019-0299-x
Appears in Collections:INV - Microbiología Molecular - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2020_Makarova_etal_NatureRevMicrobiol_final.pdfVersión final (acceso restringido)2,44 MBAdobe PDFOpen    Request a copy
Thumbnail2020_Makarova_etal_NatureRevMicrobiol_accepted.pdfAccepted Manuscript (acceso abierto)257,17 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.