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We	demonstrate	a	rapid,	single-step,	and	ultrasensitive	assay	approach	for	quantification	of	target	protein	molecules	from	

a	single	droplet	test	sample.	The	assay	is	comprised	of	antibody-conjugated	gold	nanoparticles	(AuNPs)	that	are	“activated”	

when	they	are	mixed	with	the	test	sample	and	bind	their	targets.	The	resulting	liquid	is	passed	through	a	microfluidic	channel	

with	a	photonic	crystal	(PC)	biosensor	that	is	functionalized	with	secondary	antibodies	to	the	target	biomarker,	so	that	only	

activated	AuNPs	are	captured.	Utilizing	recently	demonstrated	hybrid	optical	coupling	between	the	plasmon	resonance	of	

the	AuNP	and	the	resonance	of	 the	PC,	each	captured	AuNP	efficiently	quenches	the	resonant	reflection	of	the	PC,	thus	

enabling	the	captured	AuNPs	to	be	digitally	counted	with	high	signal-to-noise.	To	achieve	a	single-step	assay	process	that	is	

performed	on	a	single	droplet	test	sample	without	washing	steps	or	active	pump	elements,	controlled	single-pass	flow	rate	

is	obtained	with	an	absorbing	paper	pad	waste	reservoir	embedded	in	a	microfluidic	cartridge.	We	use	the	Activate	Capture	

and	Digital	Counting	(AC+DC)	approach	to	demonstrate	HIV-1	capsid	antigen	p24	detection	from	a	40	µL	test	sample	at	a	

one	million-fold	dynamic	range	(10-10
7
	pg	mL

-1
)	with	only	a	30-minute	process	that	is	compatible	with	point-of-care	(POC)	

analysis.	The	AC+DC	approach	allows	for	ultrasensitive	and	ultrafast	biomolecule	detection,	with	potential	applications	in	

infectious	disease	diagnostics	and	early	stage	disease	monitoring.		
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Figure	 1	Workflow	of	 the	 AC+DC	 assay	 in	 a	microfluidic	 cartridge.	 (a)	 The	 test
sample	is	mixed	and	incubated	with	an	excess	of	AuNP-antibody	conjugates.	(b)	
The	mixture	is	introduced	into	a	microfluidic	device	which	is	comprised	of	a	PC	for	
sensing	 and	 an	 absorbing	 pad	 for	 pumping.	 (c)	 The	PC	 reference	 area	 (blue)	 is	
blocked	with	 proteins	 to	prevent	non-specific	 binding	and	 the	PC	active	area	 is	
functionalized	 with	 capture	monoclonal	 antibodies.	 The	 analyte	 is	 sandwiched	
between	 the	AuNP	conjugate	and	the	 immobilized	capture	antibody	on	 the	PC	
surface.	(d)	The	sensing	regions	are	scanned	using	PRAM.	High	contrast	and	digital	
resolution	 images	are	obtained	by	 the	detection	of	 the	reflected	 intensity	drop	
caused	by	the	local	nanoparticle	binding.	
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Figure	2	(a)	Schematic	of	the	microfluidic	photonic	resonator	absorption	microscopy	(PRAM)	instrument.	(b)	Photo	of	the	
fully	assembled	microfluidic	cartridge.	 (c)	An	 expanded	 schematic	of	 the	microfluidic	cartridge,	which	 is	comprised	of	
patterned	PMMA	and	adhesive	 layers	(OCA).	PMMA	sheets	are	utilized	to	create	a	reservoir	for	the	 test	sample	and	a
cavity	for	the	absorbing	pad.	Adhesive	layers	are	used	to	sandwich	PMMA	sheets	and	provide	channels	for	fluid.	After	all	
layers	and	the	absorbing	pad	are	aligned	and	pressed	together,	a	functionalized	PC	biosensor	is	attached	to	the	bottom
with	adhesive.
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Figure	3	The	optimization	and	modulation	of	the	microfluidic	device.	(a)	Characterization	of	the	flow	rate	modulation
by	adjusting	the	dimensions	of	the	absorbing	pad.	The	filter	paper	pad	was	cut	into	rectangles	with	various	lengths	and
widths:	2.3	×	0.9	cm	(red,	∂=0.39),	3	×	0.7	cm	(green,	∂=0.23)	and	3.5	×	0.5	cm	(black,	∂=0.14).	Results	 indicate	 the
volume	flow	rate	is	constant,	and	increasing	with	the	increase	of	∂.	(b)	The	COMSOL	modeled	domain	is	the	2-D	cross-
section	plane	of	the	3-D	sample	channel	with	a	PC	biosensor	at	the	bottom,	where	Q	represents	the	liquid	flow	direction.
(c)	The	concentration	of	captured	AuNPs	increases	over	time,	and	the	highest	density	of	AuNP	capture	is	predicted	to	
occur	at	the	leading	edge	of	the	active	area.	(d)	The	concentration	of	target	molecules	at	the	beginning,	middle,	and
end	of	the	active	area	with	a	channel	height	of	25	mm	at	60	minutes.	Our	model	predicts	an	overall	~20%	average	
capture	efficiency	for	activated	AuNPs	within	the	active	area	of	the	sensor.		
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Figure	4	Imaging	and	quantification	of	AuNPs	by	the	microfluidic	photonic	resonator	absorption	microscopy	(PRAM)
system.	(a)	A	series	of	peak	intensity	value	PRAM	images	of	the	PC	active	area	indicate	the	increased	count	of	AuNPs	
(Example	AuNP	indicated	in	the	red	dashed	box.	An	explanation	of	the	observed	patterns	for	captured	AuNPs	by	PRAM	
is	provided	in	Supplementary	Notes)	over	60	minutes	with	0.2×	concentrated	AuNP	conjugates.		(b)	The	PRAM	images	
of	the	PC	active	area	with	addition	of	different	concentrations	of	AuNP	conjugates	samples.	(c)	The	quantification	of	
the	captured	AuNPs	density	over	time	for	each	AuNP	conjugate	concentration.	(d)	The	comparison	of	the	captured	
AuNP	density	change	between	reference	and	active	areas	over	 time.	Each	data	 point	 represents	 the	average	of	3
independent	experiments.	Error	bars	represent	the	standard	errors.
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Figure	5	HIV-1	p24	detection.	(a)	The	comparison	of	the	captured	AuNP	density	in	the	reference	and	active	areas	with	
increasing	p24	antigen	concentration	at	30	minutes.	(b)	By	subtracting	the	reference	count	from	the	active	count,	we	
observe	a	broad	linear	dynamic	range	for	the	p24	assay.	Each	data	point	represents	the	average	of	3	independent	
experiments.	Error	bars	represent	the	standard	errors.
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