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We describe an integrated project that includes theoretical, numerical and 

experimental studies designed to facilitate teaching the non-linear post-buckling of a 

cantilever column to undergraduate mechanical engineering students. We present the 

differential equation governing the behaviour of this mechanical system and show that 

this equation, although straightforward in appearance, is in fact rather difficult to 

solve due to the presence of a non-linear term. In this sense, this system is similar to 

another well known physical system: the simple pendulum motion. This educational 

paper also addresses a simplified procedure for calculating the elliptical integrals that 

appear when the differential equation is solved. We present numerical results for 

various cases. Finally, we compare the theoretical results with the experimental ones 

obtained in the laboratory  using materials which are easily and cheaply sourced. 
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1.- Introduction 

In mechanics there are some simple systems for which the equations 

governing their behaviour are easy to formulate but whose mathematical resolution is 

complicated. Of all such systems, perhaps the paradigm that is usually considered in 

physics courses at university level is the simple pendulum [1-4]. Application of 

Newton’s second law to this physical system gives a differential equation with a non-

linear term (the sine of an angle). It is possible to find the integral expression for the 

period of the pendulum from the law of conservation of energy and to express this 

period in terms of elliptic functions. However, if we consider the case of small 

oscillations it is possible to substitute the sine of the angle by the angle itself, thereby 

obtaining a second order linear differential equation with constant coefficients, the 

solution of which is the well-known harmonic function, and an amplitude-free period 

is obtained [5]. 

We shall analyze another example of a simple mechanical system, the post-

buckling of a slender cantilever bar. We shall see that it is not complicated to 

formulate the equations governing its behaviour or to study this system in a 

mechanics laboratory at university level. However, a differential equation with a non-

linear term is once again obtained. The problem is said to involve geometric non-

linearity. Moreover -as occurs with the simple pendulum for small oscillations- when 

small deflections of the cantilever bar are considered, it is possible to find a simple 

analytical solution to the problem. In this sense, the study of the post-buckling of a 

slender cantilever slender bar shows analogies with the study of the oscillations of a 

simple pendulum.  

Cantilever bars and columns are common elements of many architectural, civil 

and mechanical engineering structures. In the laboratory it is possible to design simple 
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experiments in order to analyze the post-buckling of a slender cantilever bar with a tip 

load applied at the end free. For example, Figure 1 shows a photograph of a system 

made up of a steel ruler of rectangular section built-in at one end and loaded at the 

free end with a mass. The ruler is fixed by means of a multi-clamp using two small 

metallic pieces, which provide a better support. With this experimental set-up the 

students can, for instance, determine the horizontal and vertical deflections at the free 

end as a function of the applied load, or the shape the ruler adopts under the action of 

that force, and they can relate these measurements to geometric parameters of the bar 

(its length and the inertial moment of its rectangular cross-section), as well as to the 

material of which it is made (using Young’s modulus). As can be seen in Figure 1, it 

is a physical system which is easy to assemble and analyze in the physics laboratory 

in first year university courses. This system is also composed of very simple elements 

and it is only necessary to make easy experimental measurements (basically lengths 

and masses). In addition, mathematical treatment of the equilibrium of the system 

does not involve great difficulty [6]. Nevertheless, unless small deflections are 

considered, an analytical solution does not exist, since for large deflections a 

differential equation with a non-linear term must be solved.  

The purpose of our study is to analyze the classical problem of the post-

buckling of a slender cantilever column of linear elastic material, under the action of 

an external vertical concentrated load at the free end. Under the action of this external 

force, the column deflects into a curve. This is the elastica problem, which was 

originally solved by Leonard Euler (1707-1783) and published in the appendix, “De 

curvis elasticis” of his book “Methodus inveniendi lineas curvas maximi minimive 

proprietate gaudentes” [7-9]. 



 5 

The treatment of the problem of post-buckling of a slender bar can be found in 

university textbooks on physics, mechanics and elementary mechanics of materials. 

However, in these books the discussion is limited to the consideration of small 

deflections and they present a formula for the critical load (or Euler load), that is the 

smallest axial force which can maintain the bar in a slightly bent shape. The critcal 

load can be easily calculated using the differential equation for the deflection curve 

for small deflections. As we show in this paper, the problem is similar to the analysis 

of the motion of a simple pendulum for a small initial amplitude. The analysis of large 

deflections of these types of cantilever bars of elastic material can be found in 

Landau’s book on elasticity [10], and the solution in terms of elliptic functions can be 

found in specialized books on non-linear mechanics [11]. Nevertheless, the 

developments presented in these last references are difficult for first year university 

students. 

In this paper we analyze the problem of the post-buckling of a slender, ideal 

bar built in vertically at the base, free at the upper end and subjected to a vertical 

concentrated load at the free end. Firstly, we present the differential equation for the 

deflection curve (elastic curve) in the general case of large deflections, as well as the 

equations that determine the Cartesian coordinates of each point on the elastic curve. 

For each one of these points we define a set of non-dimensional coordinates and a 

non-dimensional load parameter, which allow the solution to be expressed in a more 

general way. These equations will be solved numerically in an easy way with the aid 

of symbolic algebra software, such as Mathematica, on a personal computer, without 

using elliptic functions. Students on mechanics of materials courses may benefit from 

this alternative computational procedure. Various general numerical results are 
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presented and, by way of example, these are compared with the experimental results 

obtained in the laboratory. 

 

2.- Theoretical analysis 

We consider a long, slender, cantilever bar of uniform cross section. The bar is 

assumed to be perfectly elastic, and the stresses do not exceed the proportional limit.  

The law of behaviour of the material (stress-strain relation) is represented by the 

linear relation [6]: 

 Eεσ =  (1) 

 

known as Hooke’s law, where σ is the normal stress (the force per unit area on a 

surface element within the beam, σ = dF/dS), ε is the strain (the change in length of 

an element divided by its original length, ε = Δl/l) and E is the modulus of elasticity 

or Young’s modulus. In this study, we assume that the beam is non-extensible and 

strains remain small. Firstly, we assume that Bernoulli-Euler’s hypothesis is valid, 

i.e., plane cross-sections which are perpendicular to the neutral axis before 

deformation remain plane and perpendicular to the neutral axis after deformation. 

Next, we also assume that the plane-sections do not change their shape or area. 

Following, for instance, the analysis proposed by Feynman regarding the 

study of the post-buckling of a slender bar, it is possible to write the Bernoulli-Euler 

bending moment-curvature relationship as follows [6]: 

 

 
ρ
EIM =  (2) 
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Where M and ρ are the bending moment and the curvature radius at any point of the 

bar, respectively, and I is the moment of inertia (the second moment of area) of the 

beam cross-section. The product EI, which depends on the type of material and the 

geometrical characteristics of the cross-section of the beam, is known as the flexural 

rigidity. We also consider that the flexural rigidity is constant. Taking into account the 

relation 1/ρ = dϕ/ds, where the definition of ϕ and s can be seen in Figure 2, it is 

possible to write equation (2) as follows: 

 

 
s

EIM
d
dϕ

=  (3) 

 

This equation -which involves the bending moment, M- governs the deflections of 

beams and bars made of linear type material under general loading conditions.  

We will consider the post-buckling of a slender cantilever bar, subjected to 

one vertical concentrated load at the free end, by supposing that the deflection due to 

its own weight is null. This implies considering a massless bar. As we will see this 

approximation is valid if the bar’s own weight is much less than the critical load.  

Figure 2 shows a vertical slender cantilever bar of length L with a 

concentrated load F applied at the free end of the bar. In this figure xf and yf are the 

vertical and horizontal displacements at the free end, respectively, and ϕ0 takes into 

account the slope of the bar at the free end. We take the origin of the Cartesian 

coordinate system at the fixed end of the bar and let (x,y) be the coordinates of point 

A, and s the arc length of the bar between the fixed end and point A. In order to obtain 

the equation that governs the post-buckling of the bar, we differentiate equation (3) 

once with respect to s, and we obtain: 
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s
M

s
EI

d
d

d
d
2

2
=

ϕ  (4) 

 

In this equation we assume constant lengthwise cross-sectional area and moment of 

inertia. The differential equation (4) involves the shearing force dM/ds instead of the 

bending moment M, as appeared in equation (3). The bending moment M at a point A 

with Cartesian coordinates (x,y) is given by the equation: 

 

 )()( xxFsM f −=  (5) 

 

where xf – x is the distance along the x-axis from the section of the bar at a point A to 

the free end where force F is applied (Figure 2). 

By differentiating equation (5) once with respect to s, we obtain: 

 

 ϕsin
d
d F
s
M

−=  (6) 

 

where the relation sinϕ = dx/ds has been taken into account (Figure 2). Substituting 

equation (6) in equation (4), we obtain the non-linear differential equation that 

governs the post-buckling of a slender cantilever bar made of a linear material under 

the action of a vertical concentrated load at the free end: 

 

 0sin
d
d
2

2
=+ ϕ

ϕ F
s

EI  (7) 
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In this equation ϕ(s) is the slope at any point along the arc length with respect 

to the horizontal, and s is the arc length measured from the fixed end. Equation (7), 

although straightforward in appearance, is in fact rather difficult to solve because of 

the non-linearity inherent in the term sinϕ. As indicated in the introduction, this 

situation is similar to that which can be found in the study of the motion of a simple 

pendulum. The movement equation of a simple pendulum is similar to equation (7) 

(though for a simple pendulum of length l in a (uniform) gravitational field g, this 

equation depends on the time t instead of the arc length s, and l/g appears instead of 

F/EI) and for small oscillations only it is possible to obtain an easy analytical solution 

for the movement of the pendulum. 

In order to obtain the solution of equation (7), this equation is multiplied by 

dϕ/ds, so that it becomes: 

 0
d
dsin

d
d

d
d

2

2
=+

s
F

ss
EI ϕ

ϕ
ϕϕ  (8) 

which can be written as: 

 0cos
d
d

2
1

d
d 2

=











−







 ϕ
ϕ F
s

EI
s

 (9) 

 

where we have taken into account the relation: 

 

 
2

2

2

d
d

d
d

2
1

d
d








=
sss
ϕϕ  (10) 

 

Equation (9) is immediately integrable and it is possible to obtain the 

following expression: 
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 1

2
cos

d
d

2
1 cF

s
EI =−







 ϕ
ϕ  (11) 

 

where c1 is an integration constant. To obtain c1 we take into account that at the free 

end ϕ(L) = ϕ0, where ϕ0 is the unknown slope at the free end of the bar (see Figure 3), 

and from equations (3) and (5), it follows that: 

 

 0
d
d

=








=Lss
ϕ  (12) 

 

Then, from equations (11) and (12) we obtain c1 = -Fcosϕ0, and equation (11) 

can be written as: 

 )coscos(2
d
d

0

2
ϕϕ

ϕ FF
EIs

−=






  (13) 

 

and by integrating it we can obtain the following equation for the arc length s as a 

function of the slope ϕ of any point along the arc length with respect to the x-axis: 

 

 ∫ −
=

ϕ

ϕϕ

ϕ

0 0coscos
d

2F
EIs  (14) 

 

The total length L corresponds to the unknown angle ϕ0 at the free end of the 

beam: 

 ∫ −
=

0

0 0coscos
d

2

ϕ

ϕϕ

ϕ
F
EIL  (15) 
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Equation (15) allows us to obtain the angle ϕ0 at the free end of the bar as a 

function of the length, L, the modulus of elasticity, E, the moment of inertia of the 

cross-section of the bar, I, and the external load, F. After obtaining the arc length s as 

a function of ϕ (equation (14)), and taking into account that sinϕ = dx/ds and cosϕ = 

dy/ds, the x and y coordinates of the horizontal and vertical deflection at any point 

along the neutral axis of the cantilever beam are found as follows: 

 

 )coscoscos1(2
00 ϕϕϕ −−−=

F
EIx  (16) 

 ∫ −
=

ϕ

ϕϕ

ϕϕ

0 0coscos
dcos

2F
EIy  (17) 

 

From Figure 2, it is easy to see that the horizontal and vertical displacements 

at the free end can be obtained from equations (16) and (17) taking ϕ  = ϕ0: 

 

 )( 0ϕxx f =  (18) 

 )( 0ϕyy f =  (19) 

 

We introduce the non-dimensional load parameter k, which is proportional to 

the external load F and defined as follows: 

 
EI
FLk
2

=  (20) 

 

We also introduce the non-dimensional coordinates:  
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 u = x/L (21) 

 v = y/L  (22) 

 

as well as the non-dimensional tip deflection ratios: 

 

 uf = xf/L = u(ϕ 0) (23) 

 vf = yf/L = v(ϕ 0)          (24) 

 

Using the parameter k, it is possible to obtain a more general view of the 

results, because cantilever bars with different combinations of E, I, F and L may give 

the same value of k and, consequently, they would have the same behavior. 

Taking into account the definitions of k, u and v, equations (15), (16) and (17) 

can be written as: 

 02
coscos

d0

0 0
=−

−∫ k
ϕ

ϕϕ

ϕ  (25) 

 )coscoscos1(2 00 ϕϕϕ −−−=
k

u  (26) 

 ∫ −
=

ϕ

ϕϕ

ϕϕ

0 0coscos
dcos

2
1
k

v  (27) 

 

Equation (25) allows us to obtain ϕ0 as a function of the non-dimensional load 

parameter k. However, equations (25) and (27) are elliptic integrals that may be 

evaluated numerically. Given the vertical external force F, the free-end location 

parameters can be determined from equations (23), (24), (26) and (27) after 
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evaluation of the angle ϕ0 in equation (25). However, equation (25) implicitly relates 

ϕ0 to the load F by means of k. 

In the case of small deflections, the angle ϕ is small for all the points on the 

cantilever beam. If ϕ and ϕ0 are sufficiently small, the approximations: 

 
2

1cos
2ϕ

ϕ −≈         
2

1cos
2
0

0
ϕ

ϕ −≈   (28) 

 

may be used in equations (25)-(27). From equation (25), we can write: 

 

 0d0

0 22
0

=−
−

∫ k
ϕ

ϕϕ

ϕ  (29) 

 

and integrating it, we can easily see that, for small deflections, the value of the angle 

at the free end of the beam, ϕ0, disappears from the equation and we obtain that the 

load parameter, k, introduced in the previous section, is equal to π2/4. Taking into 

account the definition of k (equation (20)), F will be equal to π2EI/4L2. This implies 

that F is not dependent on the angle ϕ0 for small deflections. When the applied force 

is less than π2EI/4L2, there is no deflection of the bar and hence no buckling [6]. If the 

applied force F is gradually increased, the straight form of equilibrium becomes 

unstable and a small lateral force will produce a deflection which does not disappear 

when the lateral force is removed. The critical load (or Euler load), Fcr, is then 

defined as the smallest axial force which can maintain the bar in a slightly bent form, 

and for the slender cantilever bar we are analyzing its value is: 
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2

2

4L

EI
Fcr

π
=  (30) 

 

If we analyze the post-buckling of a slender cantilever bar under a combined 

load consisting of a uniformly distributed axial load (its own weight) and a 

concentrated load at the free end, we obtain a differential equation that must be solved 

using complex numerical integration procedures. From the specialized bibliography 

[12] it is possible to see that the effect of the bar’s own weight, W, on the magnitude 

of Fcr is equivalent to a load of 0.3W applied at the top of the bar, and the critical load 

is now: 

 W
L
EIFcr 3.0

4 2

2
−=′

π  (31) 

 

The critical requirement for disregarding the effect of a beam’s weight on its 

buckling and post-buckling performance is that the weight W should be much less 

than the Euler load, Fcr. Then equations (25)-(27) can be used to study the post-

buckling of a slender cantilever bar with a concentrated load at the free end. 

 

3.- Numerical calculation 

As mentioned above, in order to study the post-buckling of a cantilever bar 

subjected to a vertical concentrated load at the free end, it is necessary to know the 

angle ϕ0. To do this, it is necessary to solve equation (5) in order to obtain ϕ0 as a 

function of k. Equations (25) and (27) are elliptical integrals and their evaluation is 

too mathematically advanced for first year university students. Instead of writing 

equations (25) and (27) in terms of elliptic functions by means of complex changes of 
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variable which give little insight as to the nature of the solutions, it is easier for the 

students to solve the equations numerically using one of the packages of commercial 

software available. Nowadays, all university students of science and engineering are 

familiar with software such as MathCad, Derive, Mathematica or Matlab, which also 

have student versions.  

Since there is a singularity at ϕ = ϕ0, the integral (25) is broken into two parts: 

 02
coscos

d
coscos

d0 0

00 00
=−

−
+

−∫ ∫
−

−
k

εϕ ϕ

εϕ ϕϕ

ϕ

ϕϕ

ϕ  (32) 

 

where ε is a very small number. The first term in equation (32) is evaluated using the 

Mathematica program, with the aid of the “NIntegrate” command, for there is no 

singularity. The second term still has a singularity. Using transformation of the 

integral variable z = ϕ0 - ϕ, the second term in equation (32) can be changed to: 

 

 ∫∫ −−
=

−−

εϕ

εϕ ϕϕϕϕ

ϕ

0 000 cos)cos(
d

coscos
d0

0 z
z  (33) 

We can write: 

 00000 cossinsincoscoscos)cos( ϕϕϕϕϕ −+=−− zzz  (34) 

 

Since z is a very small number, it is possible to make the approximations cosz ≈ 1 and 

sinz ≈ z in equation (34), and equation (33) then takes the form: 

 
00 00 sin

2
sin
d

coscos
d0

0 ϕ
ε

ϕϕϕ

ϕ εϕ

εϕ
==

− ∫∫ − z
z   (35) 

 

and equation (32) can be approximately calculated as follows:  
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 02
sin

2
coscos

d0

0 00
=−+

−∫
−

k
εϕ

ϕ
ε

ϕϕ

ϕ  (36) 

 

In order to evaluate equation (36) we take ε = 10-12 and we vary the values of ϕ0 (the 

incognita). In Figure 3, the values of the function f(ϕ0) have been represented as a 

function of ϕ0 for k = 3, where f is defined as follows: 

 kf 2
sin

2
coscos

d)(
0

0 00
0 −+

−
= ∫

−εϕ

ϕ
ε

ϕϕ

ϕ
ϕ  (37) 

 

 As can be seen, equation (36) can be written as f(ϕ0) = 0 and, when k is 

greater than π2/4, we can see from Figure 3 that a unique solution for ϕ0 exists. 

However, it is important to point out that when k is less than π2/4 there is actually no 

solution for  f(ϕ0) = 0 other than ϕ0 equaling zero (i. e. the curve of f(ϕ0) versus ϕ0 is 

always positive). Using the Mathematica program, we obtained the values of ϕ0 as a 

function of k. To do this, for a curve such as that in Figure 3, the value of ϕ0 (for each 

k) may be determined from the equation f(ϕ0) = 0 by a trial-and-error procedure. That 

is, assume a value of ϕ0 in equation (37) and than carry out the integration. The 

procedure may be repeated for various values of ϕ0 until the function in equation (37) 

equals zero (for computation purposes, 10-7 is set instead of zero). This is very 

illustrative for the students, because they see how it is possible to easily obtain the 

value of the incognita which is implicit in an improper integral. Figure 4 shows the 

results obtained for ϕ0 as a function of k when k takes values between 0 and 12. As we 

can see from this figure, for k less than π2/4, ϕ0 is zero, and if k is gradually increased, 

there is a great increase in the angle ϕ0. Between k = π2/4 = 2.4674 and k = 3, ϕ0 
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increases from 0 to approximately π/2. On the other hand, for k > 8, the angle ϕ0 

increases more slowly. 

Knowing ϕ0 as a function of k,  it is easy to calculate the horizontal non-

dimensional tip deflection ratio using equations (23) and (26): 

 

 0cos12
ϕ−=

k
u f  (38) 

 

and integrating equation (27) with the aid of the Mathematica program, the vertical 

non-dimensional tip deflection ratio can also be calculated from the following 

equation 

 ∫
−

++
−

=
εϕ ϕε

ϕ
ε

ϕ
ϕϕ

ϕϕ0

0
0

3

0
0

0

sin2
3
1

sin
2cos

coscos
dcos

2
1

kkk
v f   (39) 

 

where we take ε = 10-12.  Figure 5 shows the results obtained. As we can see, the 

values of uf increase rapidly between k = π2/4 = 2.4674 and k = 4.245. For k = 4.245 

we obtain the maximum horizontal deflection whose value is uf = 0.8056, and from 

equations (20) and (30) this value is obtained when the vertical applied force is 

approximately F = 1.720Fcr.  On the other hand, vf decreases when k increases (for k > 

π2/4). Finally, in Figure 6 the elastic curves for different values of the load parameter 

have been plotted.  

 

4.- Experimental results 

As an experimental example of a slender cantilever bar, the steel ruler in 

Figure 1 was considered. The length of the ruler is L = 30 cm and it has a uniform 
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rectangular cross-section of width b = 3.04 cm and height h = 0.078 cm. The moment 

of inertia of the cross section is given by the equation I = bh3/12, and its value is I = 

1.20 x 10-12 m4. The weight of the ruler is W = 0.554 N and an external force F acts on 

the free end of the ruler. The Young’s modulus of the ruler material was calculated 

for small deflections and the value obtained was E = 200 GPa [13], which implied 

that the flexural rigidity was EI = 0.240 Nm2. Using equation (30) we can obtain the 

critical load for this cantilever bar, without considering its own weight, and the value 

obtained,  Fcr = 6.580 N, is much higher than W. We considered six applied forces 

whose values range from 7.448 N to 8.624 N and we measured the horizontal and 

vertical displacements at the free end. Figure 7 shows the results obtained as well as 

the results calculated with the aid of equations (36), (38) and (39) using EI = 0.240 

Nm2. It can be seen from this figure that there is good agreement between the 

experimental and theoretical values. Figure 8 shows the experimental elastic curve as 

well as the one calculated with the aid of equations (36)-(39) for an applied force F = 

7.644 N.  

 

5.- Conclusions 

The post-buckling of a uniform slender cantilever bar subjected to a tip load at 

the free end has been theoretically, numerically and experimentally analyzed. We 

have shown that, although we are dealing with a simple mechanical system, it is 

described by a differential equation containing a non-linear term. The differential 

equation governing the behaviour of this system is derived without difficulty, and by 

analyzing this equation it is possible to show that, although straightforward in 

appearance, it is in fact rather difficult to solve due to the presence of a non-linear 

term. We have presented the solution of this differential equation in terms of elliptic 
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integrals. Although the solutions to the elastica equations could be expressed in terms 

of elliptic functions, it is much more convenient for undergraduate students to use 

numerical integration as outlined in this paper. Numerical integration was performed 

using the Mathematica program to obtain the exact solution. This study shows that 

students are able to enrich their skills in maths, mechanics and computers by means of 

a single project. Additionally, the experiment enables students to apply well-

understood concepts to a practical problem and highlights a number of areas in which 

the experiment provide students with both technical knowledge and practical evidence 

of the post-buckling behaviour of simple structures. We have also shown that the 

post-buckling of a slender cantilever bar may be easily studied with a simple, easy-to-

assemble, low-cost experiment, enabling the deflections of a cantilever bar to be 

experimentally studied by means of a series of simple measurements, such as lengths 

and masses. Finally, the integrated project described in this paper provides students 

with not only an understanding of the nonlinear post-buckling of a cantilever column 

but also a better understanding of the basic concepts of mechanics of materials. 

Important topics, including concentrated loads, linear elastic materials, modulus of 

elasticity, large and small deflections, moment-curvature equation, elastic curve, 

moments of inertia of the beam cross-section and bending moment, are considered in 

this experiment. 
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FIGURE CAPTIONS 

 

Figure 1.-  Photograph of a slender cantilever bar loaded with an external vertical 

concentrated load at the free end. 

 

Figure 2.-  Slender cantilever bar loaded with an external vertical concentrated load 

at the free end. 

 

Figure 3.- f(ϕ0) as a function of ϕ0 for k = 3. 

 

Figure 4.- Values obtained for ϕ0 as a function of the non-dimensional load 

parameter k. 

 

Figure 5.- The horizontal and vertical non-dimensional tip deflection ratios, uf and vf, 

respectively, as a function of the non-dimensional load parameter k. 

 

Figure 6.- Elastic curves for different values of the load parameter k. 

 

Figure 7.- Experimental and theoretical values for uf and vf as a function of the load 

parameter k. 

 

Figure 8.- Experimental and theoretical elastic curves for the slender cantilever bar 

shown in Figure 1, loaded with an external vertical concentrated load F = 

7.644 N at the free end.  

 


