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Abstract

What was once broadly viewed as an impossibility – learning from experimen-

tal data in economics – has now become commonplace. Governmental bodies, think

tanks, and corporations around the world employ teams of experimental researchers

to answer their most pressing questions. For their part, in the past two decades aca-

demics have begun to more actively partner with organizations to generate data via

field experimentation. While this revolution in evidence-based approaches has served

to deepen the economic science, recently a credibility crisis has caused even the most
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ardent experimental proponents to pause. This study takes a step back from the bur-

geoning experimental literature and introduces 12 actions that might help to allevi-

ate this credibility crisis and raise experimental economics to an even higher level. In

this way, we view our “12 action wish list” as discussion points to enrich the field.

JEL Classification: A11, C91, C93

“There is a property common to almost all the moral sciences, and by which they are dis-

tinguished from many of the physical... that it is seldom in our power to make experiments in

them”, Mill (1836, p.124).

“Unfortunately, we can seldom test particular predictions in the social sciences by experiments

explicitly designed to eliminate what are judged to be the most important disturbing influences.

Generally, we must rely on evidence cast up by the ‘experiments’ that happen to occur”, Friedman

(1953, p.10).

“Economists cannot make use of controlled experiments to settle their differences: they have to

appeal to historical evidence”, Robinson (1977, p.1319).

“The economic world is extremely complicated. There are millions of people and firms, thou-

sands of prices and industries. One possible way of figuring out economic laws in such a setting

is by controlled experiments... like those done by chemists, physicists, and biologists... Economists

have no such luxury when testing economic laws. They cannot perform the controlled experi-

ments of chemists or biologists because they cannot easily control other important factors. Like

astronomers or meteorologists, they generally must be content largely to observe”, Samuelson and

Nordhaus (1985, p.8)

Introduction

The give and take between theory and data in the natural sciences is so ingrained in mod-

ern thought that an integral part of the scientific method – that theories must be tested



3

against experimental evidence – is now second nature. This fact, of course, was not lost on

the icons of economics, many of whom felt compelled to express their anguish by compar-

ing empirical approaches across the social and natural sciences. The common thread in the

epigraph musings is that if economists desire to do experimentation they should choose an-

other practice, and if they want to engage in empirical economics, they should start look-

ing for available naturally occurring data. This is presumably because the writers believed

that it was impossible to collect/learn from experimental data in economics. These gen-

eral feelings were shared ubiquitously throughout the 19th and 20th centuries, as extracting

knowledge from historical data and personal introspection represented the primary source,

and indeed in most cases the sole source, of new empirical knowledge in economics.

The economic landscape is changing. In the past several decades constructing new ap-

proaches to generate data have opened up several avenues for a fresh approach to under-

standing the economic relationship of theory and data. Whether by lab or by field, the

popularity of experiments in economics has steadily increased, in large part due to the

advantages they offer in identification, control, statistical inference, and interpretability.

Properly constructed experiments take the analyst beyond measurement, into the “whys”

of the causal relationship. It is often within these “whys” where the deep theoretical un-

derstandings or the key policy takeaways reside (see, e.g., List (2004b) on using field ex-

periments to understand the nature of discrimination observed in markets).

While many would consider using randomization in the lab and the field as an unequiv-

ocal success in moving economics to a new scientific level, recently critics in the broader

social sciences have called for the movement to proceed more cautiously. As Maniadis

et al. (2017) point out, an active debate has surfaced that claims there is a “credibility

crisis” in several scientific disciplines, including psychology (Nosek et al. 2012), manage-

ment (Bettis 2012), and several branches of the biological and human sciences (e.g., Jen-

nions and Møller (2003); Ioannidis (2005)). While the crises take many forms, one com-
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mon widespread concern revolves around reproducibility, with the rate of ‘false positives’

representing a particular concern.

This literature motivated us to step back from the evidence-based movement and ask

a simple question: if we could gather social scientists in a room and had the goal of en-

hancing knowledge discovery, what advice would we give to experimental researchers? This

thought experiment yields a wish list of 12 things that we hope experimental economists

will do more of in the future. We group our list of 12 recommendations into three bins.

We begin with the decision concerning what data to acquire to ensure the generalizability

of our results. We proceed to discuss best practices to generate informative and credible

evidence via experimentation. We conclude with ways to interpret, build on, and scale the

initial experimental evidence to make it useful and relevant for practitioners. We represent

these bins by three broad questions below.

(1) What data should we acquire? We begin by calling researchers to carefully consider

the generalizability of their findings not only after the analysis stage, but already when

making the data acquisition choice. To facilitate this approach, we highlight systematic

threats to generalizability in experiments. These considerations prompt us to advocate for

running more field experiments, especially natural field experiments. We do so not only

because natural field experiments are relatively new compared to many other empirical ap-

proaches, and therefore much ground is untrodden, but also because they provide a unique

mix of desirable features – randomization and realism – that other approaches have diffi-

culty combining by their very nature. This bin concludes with a call for using lab and field

experiments (as well as naturally-occurring data) as complements in the evidence genera-

tion process. This is important because they each provide different parameters of interest

(see Al-Ubaydli and List (2015)) and address the aforementioned threats differently.

(2) How should we generate data and interpret information from experiments? This

second bin collects considerations for the design and analysis of experiments to make our
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results more informative and credible. We first highlight the dangers of over-reliance on

p-values for inference, and discuss alternatives. Complementing that interpretational ques-

tion is a discussion of proper replication. Replication was a leg of the Fisher (1935) exper-

imental tripod and represents a signature issue within the credibility revolution that we

simply echo here, alongside recommendations for incentivizing replications. Our second bin

also includes four design elements that critically determine what, and how much, we can

learn from the data generating process: adequately considering statistical power in the de-

sign phase; adjusting for multiple hypothesis testing (a common reason for false positives)

not only in our data analysis but also in our designs; using blocked randomization to in-

crease power and ensure balance; and understanding heterogeneity through within-subject

variation when necessary and appropriate.

(3) How can we produce evidence that is relevant for policy making? Our last bin re-

volves around how experimentalists can most usefully assist policy makers. Perhaps sur-

prisingly, this discussion begins with advocating for a deeper use of theory to motivate de-

signs by going beyond typical A/B tests. This approach importantly allows the analyst

to determine the “whys” behind a result, leading to more effective policies. In addition, it

helps to maintain fidelity of the program when policymakers scale the intervention. Scaling

needs science in and of itself, and that science should be considered early in the experi-

mental design phase. Complementing this discussion is a plea for experimentalists to go

beyond measurement of short-run substitution effects to focus also on long run effects–

these are behavioral effects that policymakers find of great import but are often not pro-

vided in the literature.

In order to help the reader to better navigate the paper, we include here a summarized

list of our twelve suggestions.

1. Appropriately consider generalizability, across the lab and the field. We

provide a framework for assessing the generalizability of experimental results, i.e
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whether the result continues to hold when some variable in the experiment is changed.

We identify threats to generalizability in the following areas: the characteristics of

the experiment itself, subjects’ participation and compliance decisions, and the rep-

resentativeness of the sample.

2. Do more field experiments, especially natural field experiments, because

they are uniquely suited to deal with many of the threats to generalizability outlined

in Section 1, and because they provide unique control over the participation decision.

3. Use lab and field experiments as complementary approaches in the produc-

tion of scientific knowledge. We recommend that researchers choose the type of ex-

periment that is the best fit for the scientific question at hand, taking into account

the level of control on the task, the generalizability, and the costs, and also combine

different types of experiments for the best results.

4. For proper inference, go beyond p-values. This includes recognizing the im-

portance of statistical power to avoid false negatives and effect inflation. We suggest

adopting a Bayesian framework of inference that explicitly considers the priors (of

researchers and/or the research community) about the studied phenomena.

5. Replicate early and often. Replication should be an integral part of the experi-

mental process, but in reality it remains rare. We show the value of replication in a

Bayesian framework, and discuss possible ways to incentivize researchers to conduct

replication studies.

6. Consider statistical power in the design phase. Rather than ex post power

calculations, we advocate for taking power seriously ex ante. To assist this process,

we provide an overview of practical issues related to sample size calculations.
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7. Adjust for multiple hypothesis testing, in power tests and in data analy-

sis. The practice of simultaneously conducting multiple comparisons is widespread

in the experimental literature, and can lead to high false positive rates. We discuss

different methods to deal with this challenge, and focus in detail on controlling the

family-wise error rate.

8. Use blocked randomization to increase power and credibility. When base-

line characteristics of the participants are observable, researchers should utilize this

information when they assign subjects to treatment through blocked randomization.

This practice can increase the power of the study – and allow the researchers to sig-

nal which dimensions of heterogeneity they find ex ante important. We also discuss

methods other than randomization for treatment assignment.

9. Use within-subject designs when appropriate. In cases when potential biases

from learning or sensitization do not pose a serious threat, researchers should con-

sider using a within-subject design (in which the same subject is exposed to multiple

treatments sequentially), as it often yields greater statistical power than between-

subject designs, and may help reveal heterogeneous treatment effects.

10. Go beyond A/B testing by using theoretically-guided designs. Incorporat-

ing economic theory into the design of experiments allows researchers to explore the

underlying mechanisms that cause an effect, to estimate structural parameters, to

conduct welfare analysis, and to better capture general equilibrium and spillover ef-

fects.

11. Focus on the long run, not just on the short run. Measuring the long-run ef-

fect of treatments is crucial for ROI calculations, and for adequately estimating wel-

fare and general equilibrium effects.
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12. Understand the science of scaling ex ante and ex post. We argue that scaling

should be treated as a scientific problem in its own right. We provide a framework

that incorporates the ideas expressed throughout this paper, allowing researchers to

“backward induct” and address potential threats to scalability already in the design

of experiments.

We contend that many of the questions discussed in this paper are not restricted to

experiments; the issues of generalizability, causal inference, replication, power, correct-

ing for multiple hypothesis testing, the use of theory, measuring long-term effects, etc.

are relevant for applied economics research more generally. Moreover, despite our usage

of the term “experimentalists”, we do not view the experimental method as confined to

a subset of the profession. Rather, we believe experiments may serve as a helpful tool for

economists who are active in any field, given the right circumstances. We therefore hope

that our paper can be informative not only for those scholars who are already engaged in

conducting experiments, but for any economist who has ever considered running one.

The remainder of our study proceeds as follows. The next section presents preliminaries

and sets the stage for the development of our three bins. We then describe our views on

what data to acquire, how to generate data and create useful information via experimenta-

tion, and how to interpret, build on, and scale the initial experimental evidence. This dis-

cussion yields our dozen ideas that we hope experimental economists will do more of in the

future. Throughout the paper, we point our readers to inspiring examples of experiments

that engage in the practices we advocate for. We conclude with summary thoughts.
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Preliminaries: experiments, estimation and randomiza-

tion

This section offers an overview of the most relevant concepts to be applied throughout the

paper (readers familiar with the inferential basics of economic experiments may wish to

skip this overview, and start directly at Section 1). We begin by defining our subject of

interest. In principle, we consider an experiment broadly: a study that generates pri-

mary, or original, data in a controlled environment. This inclusive definition permits the

original studies of early experimentalists to be classified as experiments as well as impor-

tant studies that exploit controlled environments but use non-experimental variation as

the primary means of identification.1 While we view experiments broadly, for the purposes

of this study, we take a narrower definition of experiment by considering only those stud-

ies where researchers generate primary data by using randomization to identify a causal

relationship.2 Accordingly, there is a clear difference between these type of data and data

obtained from so-called natural experiments, where subjects are randomly allocated

to different treatment groups by a process outside of the researcher’s control (such as the

draft lottery in Angrist 1990); or from quasi-experiments, in which subjects are not ran-

domly assigned to treatments (Greenstone and Gayer 2009). The interested reader can

find more on the different types of experiments in Shadish et al. (2002).

In the following, we present a framework intended to guide our discussion of experi-

ments, formalizing the most important concepts used in the paper. Individual i has co-

1Examples include studies that, instead of comparing outcomes between a treated and a control group,
make comparisons along pre-existing traits of their subjects, such as their gender, age, religion, occupa-
tion, etc. Consider, for instance, Koudstaal et al. (2015) who study differences in risk attitudes among
entrepreneurs, managers and employees.

2Our definition is in the spirit of Shadish et al. (2002), who define an experiment as “a study in which
an intervention is deliberately introduced to observe its effects”, and a randomized experiment, in ad-
dition, must be such that “units are assigned to receive the treatment or an alternative condition by a
random process”.



10

variates xi. The experiment has characteristics ω, where ω includes the subject population

(university students, CEOs, etc.), context (artificial vs. natural), time horizon (long vs.

short), and other characteristics. The experiment consists of the following stages:

• Let pi be an indicator variable for the participation decision such that pi = 1 if

subject i chooses to participate in the experiment, and pi = 0 otherwise.

• Let zi denote assignment to treatment. For example, zi = 1 if student i is as-

signed to a small class size (zi will be random in the experiments we discuss).

• Let di be the treatment status, which is the treatment individual i actually re-

ceives (e.g. di = 1 if student i actually attends a small class). Note that it is possible

that zi and di are different.3

• Let yi1 be the outcome of interest (e.g. the child’s test scores) when treatment

status is di = 1, and yi0 when treatment status is di = 0.4

We follow the potential outcomes framework, in which an individual i has outcome

yi1 in the treated group and yi0 in the control group. Ideally, when conducting an experi-

ment, researchers would like to measure individual treatment effects for each individual i,

yi1− yi0, which is the difference in outcomes for individual i being in the treated versus the

control group. In practice, of course, they cannot observe both of these outcomes; instead

they can only observe individual outcomes in one of the treated states, and the counter-

factual outcome in the other state remains unobserved. Instead of individual treatment

effects, researchers therefore usually consider the Average Treatment Effect (ATE),

3There are two possible cases: (1) The subject is assigned to a treatment z, such as a voucher to enroll
in training, that is of a different nature than the treatment status, which is whether the subject actually
enrolled in treatment. In that case, Z 6= D. (2) Alternatively, the subject is assigned to a treatment z,
which is already one of the potential treatment statuses. For example, the subject is assigned to a training
course z = 1 or not z = 0. Subjects can still opt in (d = 1) or out (d = 0) of the training course, and in
this case Z = D.

4Our framework follows the tradition of Rubin (1974), which can traced back to the work of Jerzy
Neyman; see also Freedman (2006).
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given by τ ∗ = E[yi1 − yi0]. The ATE measures the average difference in the outcomes for

the population. The ATE τ ∗ is not directly observable either; instead researchers estimate

τ , defined as:

τ = E[yi1|di = 1]− E[yi0|di = 0].

Estimate τ measures the difference between the average effect of the treatment on those

who were treated and the baseline average outcome of those who were not treated. As it

will become clear below, when: 1) d is randomly assigned, 2) subjects do not opt in or out

of their assigned treatments, and 3) potential outcomes of an individual are unrelated to

the treatment status of any other individual, then τ = τ ∗.5 Note that the ATE does not

allow researchers to estimate the percentiles of the distribution of treatment effects, or

other moments such as the variance (we discuss estimating heterogeneous treatment ef-

fects in Section 9) and, unlike measures based on percentiles such as the median, the ATE

is sensitive to outliers, observations whose value greatly differs from the rest (Deaton and

Cartwright 2018). Note also that the “experiment population” is not necessarily a random

sample of the entire population and may be selected according to observables; in that case,

we only learn the effect of the treatment on the particular sub-population from which the

sample is drawn (Duflo et al. 2007), an issue we discuss in detail in Section 1.

In the absence of randomization, researchers estimate

τ = E[yi1|di = 1]− E[yi0|di = 0] = E[yi1 − yi0|di = 1]︸ ︷︷ ︸
ATE on the treated

+E[yi0|di = 1]− E[yi0|di = 0]︸ ︷︷ ︸
selection bias

A non-zero selection bias term in the previous equation indicates that those who se-

lect into treatment are different in the untreated state from those who do not sort into

5The third assumption is the “Stable Unit Treatment Value Assumption” (Angrist et al. 1996; Duflo
et al. 2007), which assumes away any spillover effects.
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treatment. This happens, for example, if smokers who are more motivated to quit are

more likely to enroll in a smoking cessation treatment than those who are unmotivated:

in such a case, we end up with program participants who are inherently different (more

motivated) than those who did not take up the program, leading to a biased (in our case,

overoptimistic) estimate of the program’s effect on quitting. In order to rule out selection

bias, it is necessary to make certain assumptions, such as the Conditional Independence

Assumption (Rosenbaum and Rubin 1983):

{yi0, yi1} ⊥⊥ di|xi,

which claims that the outcome in each state and the assignment to treatment for a

given individual are independent conditional on the observable covariates. Intuitively,

the Conditional Independence Assumption means that conditional on the observables xi,

the assignment to treatment is as good as random, and it implies that E[yi1|xi, di = 1] −

E[yi0|xi, di = 0] = E[yi1 − yi0|xi], and therefore that τ = τ ∗.

Crucially, random assignment to treatment automatically implies the Conditional Inde-

pendence Assumption and hence solves the issue of selection bias (Duflo et al. 2007). As

such, the most important reason why researchers (not just economists) use randomization

is because it allows causal inference under potentially weaker assumptions than alternative

methods.6 Randomization serves as a novel instrumental variable (IV), balancing unob-

servables across control and treatment groups (Al-Ubaydli and List 2013).7

Studies based on random assignment also have the advantage of being easily replicable,

6A recent study suggests that in the presence of non-i.i.d. errors, IV estimates can have lower power
than usually assumed, and a reassessment of published work suggests that statistically significant IV re-
sults depend heavily on a few observations, and provide little statistical evidence of a bias in ordinary least
squared (OLS) estimates (Young 2017). These issues typically do not arise in a well-designed randomized
experiment.

7For a discussion of some popular non-experimental methods, and their comparison to experiments,
see Duflo et al. (2007). For a comprehensive discussion of the problems of randomization, see Deaton and
Cartwright (2018).
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in contrast to methods that rely on baseline covariates to assign treatments without ran-

domization.8 Random assignment can also deal with three challenges related to practical

implementation and feasibility: first, it prevents the experimenter from allocating subjects

to treatment and control in ways that would bias the results (for example, politicians as-

signing their constituents to a “schooling” treatment, or physicians assigning patients with

higher perceived need to treatment). Second, it provides a credible way to measure treat-

ment effects because it allows for a straightforward calculation of mean differences between

the treatment groups where researchers have little leeway. Third, randomization is cru-

cial in instances when fairness and transparency are a concern, because it insures against

favor/discrimination towards particular groups.9

Though applied economists typically use conventional, sampling-based tests to analyze

data from experiments, random assignment to treatment also allows for the construction

of exact tests that do not rely on assumptions about the sample size or the error struc-

ture (Young 2019). In essence, randomization-based inference treats subjects’ potential

outcomes as fixed, and considers their assignment to treatment as random – an approach

better fit for analyzing experimental data than sampling-based inference that assumes that

treatment assignment is fixed, outcomes are random, and subjects are drawn from a much

larger population (Athey and Imbens 2017a). A drawback of randomization-based infer-

ence is that it provides an exact test of a sharp null : one that specifies a precise treat-

ment effect for each participant (Young 2019). Rather than testing whether the average

treatment effect was zero, this approach only allows us to test the null hypothesis that

the treatment had no effect on any participant at all – a null that Young (2019) considers

stringent but not unreasonable.

8We return to the topics of replicability in Section 5 and optimization-based methods (e.g. Kasy 2016)
in Section 8.

9Note that methods other than randomized experiments can achieve this goal too, see Deaton and
Cartwright (2018); Kasy (2016); Banerjee et al. (2017b). We discuss scaling up further in Section 12.
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To conclude, while randomization does not solve all (theoretical or practical) problems

related to causal inference, when proposing alternatives to randomization in experiments,

researchers should be very precise about the exact details of the alternative they propose,

or else they run the risk of underestimating the value of experimentation (Senn 2013).

Throughout our paper, we follow the taxonomy for experiments developed by Harri-

son and List (2004), who identify four general categories, as summarized in Table 1.10

Laboratory experiments study university students as subjects in an artificial environ-

ment i.e. the lab. For example, Goeree and Holt (2001) have university students play a

series of games, showing how the predictive power of the Nash equilibrium is not robust to

(supposedly innocuous) changes in payoffs in those games. Artefactual Field Experi-

ments (AFE), also known as lab-in-the-field, share most of the characteristics of lab ex-

periments (such as having an artificial environment), but use the relevant population of in-

terest as subjects. For example, Levitt et al. (2009) observed chess players at two interna-

tional open tournaments to gather data on strategic behavior on some well-known games.

Framed Field Experiments (FFE), like AFE, use the relevant population as subjects,

but take place in a natural environment, such as the market, school, hospital, etc. For ex-

ample, Gosnell et al. (2017) incentivized airline captains to improve efficiency and save fuel

(via performance information, personal targets, and prosocial incentives), and the pilots

were aware that an experiment was taking place. Note that all three types of experiments

described above are overt : subjects are aware of being part of an experiment.

In contrast, Natural Field Experiments (NFE) are covert : they study the relevant

population in a natural setting and, crucially, subjects are not aware of being part of an

experiment, setting NFE apart from the other types of experiments, as we discuss further

below. For example, Hallsworth et al. (2015) randomized the letters sent to individuals

who had debt obligations with the government in UK (the treatment group had an extra

10See also Karahanna et al. (2018) for a related discussion on the online variants of experiment types.
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Lab AFE FFE NFE

Population we study U S S S
Environment A A N N
Type of awareness O O O C
Who do we observe? pi = 1 pi = 1 pi = 1 All

Table 1: Summary of the characteristics of each type of experiment. Population can
be University students or the Special population of interest. The environment can be
Artificial or Natural. The experiment can either be Overt or Covert.

sentence that informed them that refusal to pay would be considered as an active choice).

In this case, subjects belonged to the relevant population and were in a natural context;

moreover they were not aware of being part of an experiment.11

In sum, we can define the relevant estimates from lab, AFE, FFE and NFE as:

τ lab = E[τ |i ∈ U, e = A, t = O, p = 1],

τAFE = E[τ |i ∈ S, e = A, t = O, p = 1],

τFFE = E[τ |i ∈ S, e = N, t = O, p = 1],

τNFE = E[τ |i ∈ S, e = N, t = C],

where U and S refer to students vs. a special population, the environment e can be ar-

tificial (A) or natural (N), the type t of experiment can be overt (O) or covert (C), and p

indicates the presence or absence of an active decision to participate in the experiment.

With these preliminaries mind, we turn to the dozen things we hope experimentalists

do more of. While there is no inherent ordering by importance of our 12 ideas, we at-

tempted to group the topics loosely by what data to generate, how to efficiently generate

and interpret the data, and how to give the most informative advice to evidence-based pol-

icymakers.

11Randomized Controlled Trials (RCT) would fall under either the FFE or the NFE classification, de-
pending mainly on whether subjects are aware of being part of an experiment or not.
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1 Appropriately consider generalizability, across the

lab and the field

When designing an experiment, researchers need to balance two key aspects that deter-

mine the value of their contribution to science and policy. One aspect is correct statis-

tical inference, including internal validity (the property of being able to identify the pa-

rameters of interest in a given design) and informativeness (how much a result can change

the prior of the scientific community). The second is generalizability (also known as ex-

ternal validity): whether a causal relationship continues to hold when subjects, context,

location, or treatment details are modified (Shadish et al. 2002). In what follows, we use

the term generalizability instead of external validity, following Harrison and List (2004).

This section outlines a framework for discussing threats to generalizability, building on the

basic ingredients introduced in the Preliminaries. In the two sections that follow, we then

use this framework to evaluate the different types of experiments (laboratory, artefactual

field, framed field and natural field experiments) as defined in the Preliminaries.

The question of generalizability has long been studied in the social sciences, but has

been often obfuscated, especially in non-experimental research, by the more pressing prob-

lem of internal validity (Al-Ubaydli and List 2013; Deaton and Cartwright 2018). While

internal validity is necessary for generalizability, it is not sufficient (Duflo et al. 2007). In

economics, the “Lucas critique” (Lucas 1976) famously tackled the issue of generalizabil-

ity, by arguing against econometric policy evaluations that failed to recognize that agents’

behavior varies systematically with changes in policy.12 More recently, a new literature

on “generalizability theory” has grown within psychology and economics (Briggs and Wil-

12In particular, the Lucas critique censured using estimates from past data to forecast the effects of a
new policy, because the behavior of the agents will change in response to the implementation of the new
policy, invalidating those estimates (Ljungqvist 2008). The interested reader will also find Goodhart’s Law
and Campbell’s Law as two social science contemporaries.
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son 2007; Higgins and Thompson 2002; Al-Ubaydli and List 2013).13 However, the topic

of generalizability still requires more attention in our field: in a survey of RCTs conducted

in developing countries and published in leading economics journals, Peters et al. (2018)

found that most of the papers did not discuss potential threats to generalizability, and ar-

gued for the peer review process to explicitly consider design features that would be rele-

vant for generalization.

In order to improve generalizability of research findings, it is useful to classify the po-

tential threats to generalizability according to their causes. We have identified four poten-

tial threats to generalizability: interaction between treatment and other characteristics of

the experiment, selective noncompliance, non-random selection into the experiment, and

differences in populations.

Threat I: Characteristics of the experiment. Characteristics inherent to the ex-

periment can inadvertently affect outcomes and thus complicate the interpretation of re-

sults. In all experiments, y will be affected by the elements of ω, such as scrutiny, stakes,

the time horizon of the intervention, and the environment (artificial or natural) (Deaton

and Cartwright 2018). As such, it may not be possible to generalize our estimates to set-

tings where those parameters are different.14 Overt experiments, in which subjects are

aware of being part of an experiment (such as lab experiments, artefactual field experi-

ments (AFE), and framed field experiments (FFE)) are particularly prone to this threat

to generalizability. The high level of scrutiny present in overt experiments may induce

“experimenter demand effects”, such that subjects attempt to behave in the way they

13See Briesch et al. (2014) for an introductory article to generalizability theory. Vivalt (2017) used tech-
niques from generalizability theory to perform a meta-analysis of 20 types of intervention in economic
development, collected from 635 papers, and found that results are more heterogeneous than in other fields
such as medicine. Within generalizability theory, there is also an intriguing approach that attempts to
generalize by establishing networks of causality (Bareinboim and Pearl 2013).

14Notice that the definition of the average treatment effect for the different types of experiments
(τ lab, τATE , τFFE and τNFE , presented in the Preliminaries) all depend on ω, the characteristics of the
experiment.
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believe the experimenter wants them to (Quidt et al. 2018). Additional threats include

Hawthorne and John Henry effects.15 Several experiments studying e.g. pro-social behav-

ior have demonstrated that scrutiny can indeed affect participant behavior (Bandiera et al.

2005; List 2006b; Benz and Meier 2008; Alpizar et al. 2008).16

Threat II: Selective noncompliance. We define as noncompliance instances when

subjects end up, either by omission or by commission, receiving a different treatment than

what they were initially assigned to. Noncompliance is especially problematic when sub-

jects actively change their treatment, e.g. because they derive higher utility from a differ-

ent treatment than the one they were assigned to, causing what is known as a selection

problem (Heckman 2010, see also Footnote 3).17 Let Z be the set of assignments to treat-

ment in the experiment, and D the set of treatment statuses in the experiment, so that

zi ∈ Z and di ∈ D. In the most general framework, subject i is assigned to treatment

zi, and there is a selection function that determines which treatment status di the subject

ends up with. For example, subject i has di = arg maxd̂i∈D u(xi, ω, d̂i)− C(xi, zi, d̂i), where

u(xi, ω, di) is the subject’s utility of being in treatment status di, and C(xi, zi, di) is her

cost of choosing di conditional on being assigned to zi. In these cases, the researcher as-

signs zi, and then the subject chooses di to maximize her utility net of switching costs.18

15The Hawthorne effect is defined by the Oxford English Dictionary as “an improvement in the per-
formance of workers resulting from a change in their working conditions, and caused either by their re-
sponse to innovation or by the feeling that they are being accorded some attention”; for a review and a
re-analysis of the data from the original Hawthorne experiment, see Levitt and List (2011). The John
Henry effect refers to subjects exerting greater effort because they treat the experiment like a competitive
contest (Horton et al. 2011).

16Camerer (2015) argues that scrutiny is not likely to affect subject’s behaviors, based on the fact that
subjects cannot usually guess the purpose of the study (Lambdin and Shaffer 2009), or that people are
also usually observed when making real-life economic decisions (Falk and Heckman 2009). However, we
believe that the scrutiny in overt experiments is of a much higher degree than what subjects normally ex-
perience, and that it likely affects behavior directly, even if subjects cannot correctly guess the purpose of
the study.

17We highly recommend the recent paper by Kowalski (2018), who argues that rather than considering
it a nuisance, researchers could treat this type of selection as a useful source of information that (com-
bined with certain assumptions) can speak to the external validity of their experiment.

18Note that whether subjects solve this maximization problem ex-ante (so that they sort into treatment
groups) or ex-post (they switch treatment groups) can have consequences for estimation (Heckman 2010).
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As a result, we may observe zi 6= di for some individuals. In the case of imperfect compli-

ance, we have that τ ∗ = E[yi1 − yi0] 6= E[yi1|di = 1]− E[yi0|di = 0] = τ .

When researchers cannot obtain the ATE due to noncompliance, they can instead esti-

mate the “Policy Relevant Treatment Effect” (which, in the case when zi is uncorrelated

with yi, coincides with the “Intention to Treat Effect” (ITT), Heckman 2010). The ITT

might be the relevant estimate in some situations, because it provides researchers with a

measure of how much the intervention “converts” into outcomes, as it considers the dif-

ference in outcomes between those who were initially assigned to treatment and the con-

trol group, irrespective of whether they complied with their treatment assignment. Re-

searchers can also estimate the “Local Average Treatment Effect” (LATE), Angrist and

Imbens (1994):

LATEp=1 = E[yi1 − yi0|ωFFE, di(zi = 1) = 1, di(zi = 0) = 0, pi = 1], (1)

where pi refers to the decision of participating in the experiment (see Preliminaries).

The LATE measures the average treatment effect for individuals induced into treatment

di = 1 by a change in zi (Heckman 2010). Note, however, that the average treatment effect

measured by the LATE is only valid for that particular subpopulation (the compliers), and

might differ from the ATE for the whole population, limiting its generalizability.19

An extreme case of non-compliance would be attrition, in which subjects leave the

experiment (and their outcomes are therefore no longer observable to the experimenter).

While random attrition only reduces power, attrition that is not random can bias the re-

sults (Duflo et al. 2007), for example when those individuals who are the most motivated

leave the experiment if they are not assigned to a certain treatment. The best approach

to solving inference problems related to attrition is to design the experiment in a way that

19For a more detailed account of LATE, and the conditions for its use, see Angrist and Imbens (1994)
and Heckman (2010).
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allows researchers to track subjects even if they leave the experiment (for more details, see

Duflo et al. 2007), or to conduct a natural field experiment.

Threat III: Non-random selection into the experiment. As we have seen in the

Preliminaries, treatment effect estimates from lab experiments, AFE and FFE are only

valid for those individuals who select into the experiment (those with pi = 1). The ability

of these experiments to identify parameters of interest thus depends on assumptions about

individuals’ decision to select into the experiment. When participation in the experiment

is not random but instead is the result of a cost/benefit analysis by the subjects, partici-

pation bias may arise (Al-Ubaydli and List 2013; Slonim et al. 2013).

Recall that the parameter of interest is the ATE for the whole population: τ ∗ = E[y1i −

y0i]. Overt experiments, however, provide the following estimate: E[y1i − y0i|pi = 1]. The

ATE τ ∗ is given by: τ ∗ = P[pi = 1] · E[y1i − y0i|pi = 1] + P[pi = 0] · E[y1i − y0i|pi = 0].

Because P[pi = 0] = 1− P[pi = 1], we can compute the participation bias:

E[y1i − y0i|pi = 1]− E[y1i − y0i]︸ ︷︷ ︸
participation bias

= P[pi = 0]× (E[y1i − y0i|pi = 1]− E[y1i − y0i|pi = 0]︸ ︷︷ ︸
treatment specific selection bias

).

(2)

In other words, participation bias is the product of the probability of not being in the

experiment P[pi = 0] and the Treatment Specific Selection Bias (which is analogous to

the classical selection bias, except that the selection is with respect to participation in the

experiment, Al-Ubaydli and List 2013).20

Because in general P[pi = 0] is very large (usually close to 1), the bias in the estimate

will be determined mainly by the Treatment Specific Selection Bias, a fact anticipated by

Slonim et al. (2013). Participation bias does not present a problem in overt experiments

when E[y1i − y0i|pi = 1] ≈ E[y1i − y0i|pi = 0]. This happens when pi is independent of yi,

20When researchers’ goal is to obtain the Intent-to-Treat (ITT) or the Average Treatment Effect on the
Treated (ATT) estimates, participation bias presents less of a problem, in the sense that researchers are
interested in estimating effects for those who choose to participate in the experiment anyway.
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either because selection does not depend on xi, or because selection depends on some sub-

set of xi which is in turn independent of yi. The following condition for overt experiments

guarantees that the Treatment Specific Selection Bias will be zero:21

{yi0, yi1} ⊥⊥ pi|xi (Generalizability Independence Condition (GIC)).

Note that participation bias can arise even if one is conducting a standard lab experi-

ment and the effect we are looking for can reliably be found in university students, in an

artificial environment, with low stakes and with scrutiny (so the first threat to generaliz-

ability is not a concern), and even if zi = di for all individuals (so the second threat to

generalizability is not a concern either). Slonim et al. (2013) found that, from a popula-

tion of roughly 900 university students, those who selected into lab experiments had less

income, more leisure time, more interest in economics and were more pro-social in the di-

mension of volunteering, all of which are consistent with participation being the result of a

cost/benefit decision. Moreover, risk averse individuals might be less likely to enroll in an

experiment (Al-Ubaydli and List 2013; Heckman 2010). Participation bias may also arise

in the field, because organizations who agree to collaborate with researchers in an exper-

iment are usually exceptional (Banerjee et al. 2017a). Consider the example of Behaghel

et al. (2015), where French firms could opt into an experiment that randomly anonymized

the resumes they received from job applicants. The experiment yielded the counterintu-

itive result that anonymizing resumes hurt minority applicants at the selection stage. The

authors point to self-selection into the experiment as an explanation: their program

likely attracted firms that already tend to treat candidates who belong to minorities bet-

ter, and anonymization prevented these selected firms from treating minority candidates

more favorably during the experiment.

21This condition is similar in spirit to the Conditional Independence Assumption (Rosenbaum and Ru-
bin 1983).
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When the independence condition does not hold (as in Behaghel et al. 2015), researchers

must explicitly consider selection into the experiment, in order to derive general conclu-

sions. Alternatively, researchers could conduct NFEs that bypass the selection problem

by design and thus allow to recover E[y1i − y0i] without further assumptions (Al-Ubaydli

and List 2013). In this sense, contrary to conventional wisdom, field experiments have the

potential for more control, and not less, than lab experiments. We return to this point in

Section 2.

Note that even when researchers manage to recruit a sample that satisfies the General-

izability Independence Condition above (i.e. pi is not correlated with outcomes), they can

still only generalize to pi = 0 for the subpopulation they draw subjects from, but not nec-

essarily to other populations (Deaton and Cartwright 2018). For example, if researchers

managed to collaborate with an NGO that has access to a large and representative sample

of the population in California (so that the GIC holds), they might able to generalize to

those with pi = 0 in California, but not necessarily to the population of Massachusetts or

France. This leads us to formulate our fourth threat to generalizability: differences in the

populations.

Threat IV: Different populations. Besides characteristics of the experiment (Threat

I.), we also need to consider how characteristics of the population from which our

participants are drawn may affect the generalizability of our results. Even behavior in a

stylized and simple game such as the Ultimatum Game exhibits substantial heterogene-

ity across populations, as seen in a series of AFE conducted in small-scale societies across

the world (Henrich et al. 2001). Researchers thus need to discuss how a population differ-

ent from their experimental sample would react to the same treatment (Athey and Imbens

2017a).22

22A related dimension to consider is heterogeneity in response to treatment across subjects in the study
or in the population from which the sample was drawn. We discuss ways to address heterogeneous treat-
ment effect in later sections, through blocking (Section 8) and within-subject design (Section 9).
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First, note that if the subject population was a random sample of the “population of

interest”, then the estimates of the Average Treatment Effect obtained in the experiment

generalize to the entire population.23 Instead researchers often rely on “convenience sam-

ples” that are easily accessible to the research team, but the estimates they provide do not

necessarily generalize to the entire population (Duflo et al. 2007; Deaton and Cartwright

2018). This problem has been traditionally exacerbated in lab experiments, where subjects

are typically from so-called W.E.I.R.D. populations (Western, Educated, Industrialized,

Rich and Democratic, Henrich et al. 2010a; Henrich and Heine 2010). The problem of non-

representative populations is pervasive in science and not confined to economics: subjects

in randomized clinical trials for new drugs are not necessarily a random sample of the pop-

ulation of interest, but are often healthier individuals than the population who is intended

to use the drug.24

One especially important dimension of generalizability across populations is gender:

either across men and women, or from one gender to the entire population. Recent years

have established a rich and robust literature documenting gender differences in response to

a variety of incentive schemes, most notably along the dimensions of competition and risk

(Croson and Gneezy 2009), supporting the claim that conclusions drawn from the behavior

of members of one gender are unlikely to generalize to the other.25 The issue of gender

becomes even more complex as we take into account its interaction with other covariates.

23We loosely define the population of interest as the population for whom we want to obtain the treat-
ment effect estimate; for example, the population targeted by a specific policy.

24Travers et al. (For example, 2007, found that less than 10% of asthma patients surveyed qualified
for a clinical trial of an asthma medication). For an interesting discussion of heterogeneity in clinical tri-
als, we recommend listening to (or reading the transcript of) the episode “Bad Medicine, Part 2” of the
Freakonomics podcast.

25Another very stark example concerns the case of clinical trials in the US. In the late 1950s and early
1960s, a drug called thalidomide caused birth defects in hundreds of newborns in a number of countries
(Lenz 1988). Although thalidomide was mostly avoided in the US thanks to Frances Oldham Kelsey at the
Food and Drug Administration (FDA Bren 2001), more stringent regulations were passed that summarily
excluded women from participation in clinical trials (Food and Drug Administration 1997, 2017). Partly
as a consequence of those regulations, 8 out of 10 drugs pulled from the market by the FDA in the years
1997-2000 had worse adverse effects for women (Heinrich 2001).

http://freakonomics.com/podcast/bad-medicine-part-2-drug-trials-and-tribulations/
http://freakonomics.com/podcast/bad-medicine-part-2-drug-trials-and-tribulations/
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For example, there is evidence that women’s preferences over competition change with age

such that the gender gap in competition, while large among young adults, disappears in

older populations (Flory et al. 2018).

In sum, we urge researchers to carefully consider the limits to the generalizability of

their results, and to design their experiments in ways that tackle these four threats to the

greatest extent possible. Nevertheless, while generalizability is important to understand

and model, we caution against a needless self-destructive overreaction to the generaliz-

ability problem that may hinder scientific pursuits. Taken to the extreme, no empirical

exercise is perfectly generalizable, so the perfect should not be the enemy of the good.26

Keeping this balance in mind, in the next section we apply our framework to natural field

experiments, and show how they can mitigate or eliminate many potential threats to gen-

eralizability.

2 Do more field experiments, especially natural field

experiments

This section builds on the framework developed in Section 1 to discuss the advantages and

disadvantages of field experiments from the point of view of the generalizability of their

results. We first argue that natural field experiments, and to a lesser extent framed field

experiments, are often less subject to the threats to generalizability than other types of

experiments. We then discuss two typically raised objections to conducting field exper-

iments: lack of control and higher cost, and argue that many times such arguments are

confused.

The first threat to generalizability we identified in Section 1 is the change in subjects’

26Journals constantly rejecting excellent empirical work on the basis of external validity concerns soon
devolves to a reductio ad absurdum.
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behavior by virtue of being in an experiment and feeling scrutinized: Hawthorne, John

Henry, and experimenter demand effects are all commonly used terms describing such

potential impacts. In case of overt experiments such as lab, artefactual field (AFE) and

framed field experiments (FFE), it is often impossible to rule out these potential biases.27

On the other hand, the covertness of natural field experiments ensures by design that the

environment is natural and there is no sense of scrutiny beyond what is natural in the

market of interest, ruling out confounds resulting from a sense of being observed (Al-Ubaydli

and List 2013). As a result, there are fewer threats to generalization from direct correla-

tion between yi and ω in NFEs. In this sense, NFEs are well suited to studying potentially

sensitive subjects, such as labor market discrimination (Al-Ubaydli and List 2019).

Researchers conducting FFEs can potentially attenuate the threats to generalizabil-

ity that result from scrutiny by collecting data over a longer time period, a possibility we

discuss in Section 11. Moreover, certain randomized controlled trials, including FFE, can

potentially be carried out as single-blind studies where subjects might be aware of being

part of an experiment but not of the particular treatments: this is the case when subjects

in the control group are given a placebo treatment which they cannot distinguish from the

actual treatment (Senn 2013). However, the fact that most economic experiments are not

double-blinded may introduce biases through the behavior of the researchers who perform

the data collection and statistical analysis: even when the participants themselves are not

aware of being treated, members of the research team are typically informed of subjects’

treatment assignment (Deaton and Cartwright 2018).

The second threat to generalizability is selective noncompliance, i.e. when the proba-

bility of changing to another treatment group is different for those who were initially as-

signed to control versus those who were initially assigned to treatment (for example, in

27It may be, however, possible to measure them: see Quidt et al. (2018) for a methodological approach
to bounding the experimenter demand effects.
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an experiment in which the treatment group is assigned to exercise at the gym, members

of the control group might decide to also exercise at the gym). This challenge does not

usually apply to lab experiments and AFEs, where noncompliance with one’s treatment

assignment is typically only possible through leaving the experiment entirely (DellaVi-

gna et al. 2012). Similarly, in NFE subjects are unaware of being assigned to a certain

treatment and are thus unlikely to actively try to change their assignment. Switching to

a different condition or opting out is often impossible by design (think of Lyft consumers

who are randomized into a high or low price for a ride – they receive that price and de-

cide whether to purchase, which is the outcome variable of interest). By their very nature,

selective noncompliance is most likely to present problems in certain FFEs.28

The third threat to generalizability, that of non-random selection into the experiment,

is an aspect where NFEs gain significant attractiveness. By virtue of bypassing the exper-

imental participation decision of subjects altogether, there is no selection by individuals

into natural field experiments by design (Al-Ubaydli and List 2013).29 In lab experiments,

it might still be possible to avoid non-random selection into the experiment. For exam-

ple, Borghans et al. (2009) initially sought volunteers (i.e. those with pi = 1) for their

experiment among high-school students, although the experiment was actually compulsory

(and included the volunteers). This process avoids non-random selection and also allows

for measurement of participation bias, since the researchers know whether pi is 0 or 1 for

28For a mechanism design approach to solving this issue in FFE, see Chassang et al. (2012).
29See List (2008) on the ethical considerations behind informed consent. The discussion revolves around

benefits and costs, recognizing that for certain sensitive research questions, the subjects’ awareness of
being part of an experiment may undermine the validity of the research (e.g. measuring the nature and
extent of gender or race based discrimination). As List (2008) writes: “This does not suggest that moral
principles should be altogether abandoned in the pursuit of science. Quite the opposite: the researcher
must weigh whether the research will inflict harm, gauge the extent to which the research benefits others,
and determine whether experimental subjects chose the experimental environment of their own volition
and are treated justly in the experiment. Local Research Ethics Committees and Institutional Review
Boards in the United States serve an important role in monitoring such activities”. We would like to em-
phasize that research can (and should) make participants better off and benefit society, while preserving
anonymity and not posing a risk to subject’s well-being.
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all subjects in the population. However, in practice it is often inconvenient or impossible

to make participation in a lab experiments compulsory.

In sum, NFEs are less prone to biases stemming from non-random selection into the

experiment, including randomization bias (when subjects are averse to the act of random-

ization itself), as well as systematic differences in the outcomes or compliance of those who

select into the experiment. However, there is an important caveat: even when subjects are

unaware of the experiment, there can be participation bias if the participation decision is

made on their behalf. For example, if firms selecting to participate in an experiment are

such that their employees share a certain characteristic that correlates with the outcome

of interest (as in Behaghel et al. 2015), the results from the experiment will only apply to

employees of other similar firms. This is because the Generalizability Independence Con-

dition (GIC) derived in Section 1 is violated. In cases where the participation decision is

made on behalf of the subjects by another agent, the researchers need to carefully consider

whether the GIC holds. If it does not, then statistical intepretation should be adjusted ac-

cordingly. This may be the case when the researchers need to collaborate with a number

of small self-selected firms, but it can be potentially alleviated when partnering with ad-

ministrations or large firms who have access to a representative pool of subjects.

The last threat to generalizability applies when we try to extrapolate the findings of

one study to a different population. Note that, in this regard, all field experiments (AFE,

FFE and NFE) offer an advantage over traditional lab experiments, because they select

the population S of interest by design, which is usually different from traditional “W.E.I.R.D.

university students” (Henrich et al. 2010b, see also the discussion of Threat IV in Section

1), such as farmers, traders, entrepreneurs, CEOs, physicians, etc. Absent participant se-

lection, within field experiments, NFEs do not have an inherent advantage over AFEs and

FFEs, in the sense that the population selected S for an NFE can still be very different

from the population of interest S ′, as would happen in AFEs and FFEs. However, NFEs
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offer a potential advantage because, by collaborating with large entities, researchers can

reach a large and often representative sample of the population or the direct population of

interest. As an example, consider Hallsworth et al. (2017), who collaborated with a public

administration to conduct their tax debtor experiment. Because the population of interest

S ′ over which results should generalize is often the entire population (say, of a given coun-

try or region), running NFEs through these types of collaborations allows researchers ac-

cess to a representative sample. As a result, generalization is either unnecessary (because

S = S ′), or it is feasible either because the subset of interest is part of the experimental

population (S ′ ⊂ S) or because the treatment effect for S ′ can be extrapolated from a

subset of S.

Al-Ubaydli and List (2013) propose a simple framework for generalizability, building

on the “all causes model” of Heckman (2000), of which we include the mathematical de-

tails in the Appendix, and describe here the main intuition.30 There are three potential

cases of generalizability: zero, local, and global generalizability. Under zero generalizabil-

ity, results cannot be generalized to any setting different from the one in which they were

obtained, which is the most conservative approach. Under local generalizability, results can

only be generalized to situations that are very similar to the ones studied in the experi-

ment. Al-Ubaydli and List (2013) argue that under the conservative conditions of zero or

local generalizability, field experiments (especially NFEs) can actually offer greater gener-

alizability than lab experiments (and AFEs), because their results can be applied in some

natural setting (the one in which the experiment was originally performed), for popula-

tions and in contexts which would be similar to those of the original experiment. This is

especially true if the experiment is implementing a program, and the researchers are eval-

uating the effects of the program in a particular population. Under global generalizability,

30In our model in the Appendix, we use different definitions than Al-Ubaydli and List (2013), but main-
tain the spirit of the original framework.
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on the other hand, results can be extrapolated to contexts that are not necessarily simi-

lar to those in which the experiment took place. In this case, neither lab experiments nor

field experiments are superior to each other in that they each measure the parameter in

the exact situation studied.

One of the most often cited argument against field experiments is the claim that the

lab provides more control than the field.31 We agree that lab experiments can have better

control over the task subjects agree to participate in, and allow researchers to use induced

values (which NFEs by definition have more difficultly doing). However, this alleged disad-

vantage must be qualified, depending on how we define “field” and “control”.

We follow Harrison and List (2004), who view the concept “field” as a continuum, where

FFE and NFE are clearly inside the set of field experiments, lab experiments are clearly

outside the set, and AFE are somewhere in between. By control, we mean the ability of

the researcher to exclude alternative explanations for the outcome, other than the cause of

interest. With this definition, the different types of experiments allow for different types

of control.32

NFE could offer more control than lab experiments, not less, along certain important

dimensions, the main one being selection into the experiment (Al-Ubaydli and List 2015).

As discussed in Section 1, lab experiments, AFE and FFE estimate treatment effects only

for those who decide to participate in the experiment (pi = 1), and not for the individuals

who do not participate (pi = 0), potentially generating an important bias. Therefore, while

the lab provides researchers with more control in the environment which participants opt

31For example, according to Falk and Heckman (2009) “the laboratory allows tight control of deci-
sion environments”, while Camerer (2015) claims that “there is little doubt that the quality of control is
potentially very high in lab experiments”. In a similar vein, Deaton and Cartwright (2018) write: “Ex-
actly what randomization does is frequently lost in the practical literature, and there is often a confusion
between perfect control, on the one hand – as in a laboratory experiment or perfect matching with no
unobservable causes – and control in expectation – which is what RCTs do”.

32We elaborate on this point further in Section 3, where we discuss the pros and cons of each type of
experiment and the complementarities between them.



30

into, it provides the researcher with less control than NFE over the participation decision

(Al-Ubaydli and List 2015). Moreover, while lab experiments are well suited to produce

qualitative treatment effects or comparative statics (Levitt and List 2007), under partici-

pation bias even qualitative treatment effects are not robust (Slonim et al. 2013).33 There-

fore, when considering the entire experimental situation – from start to finish – NFE could

potentially offer more control than lab experiments, because by bypassing the participa-

tion decision, they are not subject to participation bias (Al-Ubaydli and List 2013, 2015,

see also Section 1).

Despite the several benefits of running FFE and NFE discussed in the paragraphs above,

there remains a large obstacle to running more field experiments related to cost consid-

erations. As compared to lab experiments, field experiments can be more expensive both

in monetary terms and with respect to the planning they require and the time they take

to yield results and, ultimately, publications. However, partnering with administrations,

NGOs, or firms can substantially reduce the costs of field experiments, and thus result in a

win-win collaboration (Levitt and List 2009). Indeed, there are cases when NFE are very

low cost, and entail simply the researcher’s time when the implementing organization is

searching for partners to help generate ideas, design and conduct the experiment.34 In the

limit, it is possible for NFE to incur a negative cost: organizations can realize that the

opportunity cost of not knowing the necessary information is too great, and they can ac-

tually employ researchers to conduct field experiments that can turn into science (indeed,

there is a recent trend at tech companies of hiring PhD economists Athey and Luca 2019).

In summary, field experiments, and especially NFE, offer several advantages over other

types of experiments: being covert, they are free of potential bias stemming from experi-

menter demand effects; they allow for a more complex and natural environment in which

33In the sense that the direction of the estimated effect might be opposite to the direction of the true
treatment effect.

34For a practical take on running field experiments, see (List 2011).
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the researcher does not need to know a priori all the variables that affect the outcome;

subjects belong to the population of interest instead of being W.E.I.R.D. (Henrich et al.

2010a) and, in case of NFE, there is no participation bias because subjects do not self-

select into the experiment. All of these features enhance the generalizability of field experi-

ments.

When a researcher decides which type of experiment to conduct (lab, AFE, FFE, NFE),

there is a trade-off between the benefits obtained from conducting the experiment (the pri-

vate benefits to the experimenter, in terms of publication and advancement of her career,

and the societal benefit from advancing knowledge) and the cost of running the experi-

ment. In the following section, we discuss this trade-off in more detail in the context of

choosing which type of experiment to run.

3 Use lab and field experiments as complementary

approaches

After reviewing potential threats to the generalizability of experimental results in Section

1, and discussing what we view as the advantages of field experiments in Section 2, we now

tackle the broader question of choosing the right type of experiment (lab experiments,

AFE, FFE, or NFE; see the Preliminaries for definitions) for a given research question.

Ultimately, we believe that lab and field experiments serve different purposes, and as such

they offer complementarities in the production of knowledge (Harrison and List 2004;

Falk and Heckman 2009). We identify five main issues researchers should consider when

choosing between different types of experiments.

First, researchers need to consider the properties of the different types of experiments

from the point of view of proper statistical inference (more on this in Section 4). Lab ex-

periments, AFEs, and FFEs can offer more control on the task that subjects perform,
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once they agree to be in the experiment, than natural field experiments (Al-Ubaydli and

List 2013, 2015). This control comes in two forms: i) a more precise environment to estab-

lish causation (as an example, consider studies using induced values to test whether prices

and quantities converge to neoclassical expectations, as in Smith’s (1962) double oral auc-

tion lab experiments or List’s (2004a) multi-lateral bargaining framed field experiments)

and ii) more precise estimates (i.e. lower variance), because one can collect a more homo-

geneous sample and there are fewer unobservables affecting behavior in the lab, so it is

easier to run well-powered studies (see Section 4).

It is also crucial that researchers consider the properties of replicability. For exam-

ple, it has been argued that an advantage of lab experiments is their better replicability

(Camerer 2015). Lab experiments can offer a more portable protocol than field experi-

ments, and experimental conditions might be kept constant with more precision. We direct

the reader to Section 5 for an extended discussion on the properties of replication.

Combining different types of experiments allows researchers to tackle the issue of gen-

eralizability by exploring how different factors such as context, scrutiny, stakes and pop-

ulation affect the outcome.35 As a rule of thumb, the lab is a good place for experiments

where the identity of the population does not matter. Gächter (2010) argues that lab ex-

periments using students are excellent as a first step to test economic theories, precisely

because most theories assume generality. Neuroeconomic experiments studying brain areas

that can be extrapolated to the entire population fit in this category, as well as experi-

ments for which the outcome of interest has been shown to generalize (Stoop et al. 2012;

Cleave et al. 2013). AFE, FFE and NFE offer the possibility of using a population of in-

terest instead of a W.E.I.R.D. population (Henrich et al. 2010a,b, also Section 1). FFE

and NFE offer the additional benefit of having a natural context, where not only the pop-

35Falk and Heckman (2009), discussing the generalizability of experiments, argue that the issue is not
necessarily lab vs. field, but “the prevailing conditions such as the details of agent interactions” (see also
Section 1).
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ulation but also the environment resemble the object of interest. As discussed in the pre-

vious section, NFE offer the additional advantage that they bypass subjects’ decision of

participating in the experiment, therefore avoiding participation bias. This aspect can be

especially important if researchers want to scale up their proposed program (Section 12).

Researchers also need to consider the costs of running each type of experiment, includ-

ing all the monetary and logistical costs (recruiting participants and paying them fees,

providing treatments and incentives, collecting data, etc.) as well as the opportunity cost

of doing other types of research. As we discussed in Section 2, lab experiments are typi-

cally (but not always) cheaper than field experiments. Consequently, researchers can of-

ten begin by exploring questions using lower-cost lab experiments, and later move into

the field to replicate their initial results in a more diverse environment and population.

However, this rule of thumb has exceptions. As discussed in Section 2, FFE and NFE can

be cheaper (sometimes virtually costless in monetary terms for the researchers) when re-

searchers partner up with governmental agencies, firms and NGOs, creating win-win part-

nerships (Levitt and List 2009). Moreover, the unit cost per subject can be reduced in

field experiments due to economies of scale, and this is compounded with the cost reduc-

tion of running experiments in countries with lower costs.

Finally, there are many questions that researchers might simply not be able to tackle in

the field, due to ethical or cost constraints. To illustrate this point, consider the case of

discrimination (Al-Ubaydli and List 2013), where the two main theories in economics are

preference-based discrimination (Becker 2010) and statistical discrimination (Arrow 1973;

Phelps 1972). Natural field experiments are clearly effective at differentiating between the

two potential sources of discrimination, as they target the population and context of inter-

est, and avoid participation bias and experimenter demand effects (for a survey, see List

(2006a)). However, the lab can offer a complementary approach to exploring this question:

for example, Niederle and Vesterlund (2007) used lab experiments to investigate whether
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affirmative action policies affect selection into a tournament, an intervention that would

have been difficult to carry out in a natural setting.

In conclusion, different types of experiments offer complementarities in the level of con-

trol, replicability and generalizability they allow given their cost, and these trade-offs ulti-

mately determine, for any particular research question, the type of experiment that offers

the most value.

4 For proper inference, go beyond p-values

Throughout the previous sections, we focused on the generalizability of experimental re-

sults, discussing the extent to which we can extrapolate findings from a given study to

other contexts. We now take a step back, and examine how priors should change in light

of empirical findings. What conclusions can we draw upon observing a statistically sig-

nificant result? More generally, what should we consider to be standards of evidence, and

what is the framework of proper inference given our research data? We suggest a frame-

work where the benefits from running experiments can be measured by their informative-

ness, i.e. how much they change the priors of the scientific community.36

In biomedical and social sciences, including experimental economics, researchers typ-

ically obtain their conclusions regarding the existence of an effect or association in their

data by conducting (null hypothesis) significance testing (Fisher 1925). In particular,

they formulate a statistical model complete with a set of assumptions, among them their

null hypothesis (H0, often postulating the absence of the effect/association in question),

calculate a test statistic summarizing their data, then compare this statistic to the dis-

tribution expected under the model they specified (i.e. assuming that all the model’s as-

sumptions, including the null hypothesis, are true). The outcome of this comparison is

36This aspect should be considered even when members of the scientific community have multiple priors
(see the discussion on priors in this section, and also in Section 8).



35

summarized in the p-value: the probability that under the specified model the test statis-

tic would be equal to or more extreme than its observed value (Wasserstein and Lazar

2016). A result is then pronounced statistically significant if the p-value falls below a

pre-specified cut-off (often 0.05, but see the plea from Benjamin et al. (2017) for 0.005).

This interpretation, however, is a departure from Fisher’s original framework. In his view,

significance testing essentially measures the strength of evidence against a null hypoth-

esis, and he leaves the interpretation of the p-value to the researcher. Instead of a strict

decision rule, he advocates for examining whether or not the observed p-value is “open to

suspicion” – and if so, to run another experiment (Lehmann 1993).

A conceptually different approach to statistical inference is hypothesis testing, de-

veloped by Neyman and Pearson (1933) with the aim to reduce the subjectivity inher-

ent to Fisher’s method. This framework simultaneously addresses the probabilities of two

different types of errors of inference: incorrect rejection of a true null (Type I error) and

incorrect acceptance of a false null (Type II error). The method requires researchers to

formulate a precise alternative hypothesis against which the null hypothesis is tested (in

practice, this often means pre-specifying a particular effect size), and to fix in advance the

rates of Type I and Type II errors (typically denoted by α and β, respectively). Central

to this approach is the concept of statistical power: the pre-study probability that the

test will correctly reject a false null as a function of the alternative hypothesis (calculated

as 1− β, i.e. 1 minus the Type II error rate). Given the a priori specified decision rule (α,

β, and the alternative hypothesis Ha), the analysis results in the acceptance or rejection

of the null hypothesis. The framework allows for ex ante sample size calculations, whereby

the researchers assess the number of observations required to detect an effect of the size

as stated in the alternative hypothesis, with the pre-specified Type I and II error rates. It

is important to point out that hypothesis testing is a frequentist approach: it limits the

number of mistakes made over several different experiments, but it does not attach an in-
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terpretation to a p-value resulting from a single study (Sterne and Smith 2001).

In practice, researchers all too often focus exclusively on the statistical significance of

the results when interpreting their findings. Such narrow focus on p-values is dangerous,

as it gives rise to several misconceptions. It is crucial to understand that the p-value in-

dicates the incompatibility of the data generated in the experiment with the proposed

model, but it does not measure the probability that the null hypothesis is true: recall,

the p-value is calculated under the assumption that the model is true (Greenland et al.

2016). Thus a p-value of 0.05 from a single study does not ensure that the finding has a

mere 5% chance of being a “false positive” (more on false discovery rates later). Further-

more, low p-values should be interpreted as providing evidence against the proposed model

as a whole, not necessarily against the null hypothesis in particular. Data and model could

be incompatible if any of the underlying assumptions are violated, including those related

to the quality of measurement, the conduct of the analysis, the reporting of results, etc.

Thus, a p-value of a comparison cannot be interpreted in isolation, without considering re-

searcher degrees of freedom and the resulting potential bias (Wasserstein and Lazar 2016).

Finally, p-values do not convey any information about the size or importance of the effect

in question: tiny effects can produce low p-values if the sample size is large or the preci-

sion of the estimate is high enough, and vice versa (Greenland et al. 2016).

Despite repeated calls for moving beyond p-values and examining the statistical power

function (McCloskey 1985), most published studies continue to ignore the issue entirely.

Ziliak and McCloskey (2004) report that among empirical papers published in the Ameri-

can Economic Review in the 1990s, only 8% considered the power of the tests used. More

recently, Zhang and Ortmann (2013) failed to find a single study discussing optimal sam-

ple size in relation to statistical power among all the articles published in Experimental

Economics between 2010 and 2012. Given this lack of attention, it is unsurprising that

most published studies have very low statistical power. Despite the convention of defining
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adequate power as 80%, studies in most fields fall dramatically short of this level.37 In a

survey of more than 6700 studies in empirical economics, Ioannidis et al. (2017) find that

the median statistical power of the reviewed research areas is a mere 18%, and nearly 90%

of results are under-powered in half of the areas assessed. Coville and Vivalt (2017), focus-

ing on studies in the field of development economics, estimate a median power to detect an

average predicted effect of 59%. Only a third of the studies included in their analysis have

power greater than 80%. Analyzing time trends, Smaldino and McElreath (2016) find little

reason for optimism: according to their survey of review papers published between 1960

and 2011, mean statistical power was 24% in social and behavioral sciences, and showed

no increase over time.38

Inference from low-powered studies is problematic for at least three reasons. First, by

definition, adequate power is required to ensure that studies have a high likelihood of de-

tecting a genuine effect. Low power implies high rates of false negatives whereby the

null hypothesis of “no effect” is not rejected, despite being false. This aspect is highlighted

by De Long and Lang (1992), who review papers published in the 1980s in major economic

journals (American Economic Review, Econometrica, Journal of Political Economy, Quar-

terly Journal of Economics, and Review of Economics and Statistics) that failed to reject

the null hypothesis at the 0.1 level. The authors estimate that in their sample “failures to

reject nulls are [...] almost always due to lack of power in the test, and not to the truth

of the null hypothesis tested” (De Long and Lang 1992, p.1261). More recently, Coville

and Vivalt (2017) estimate an average false negative reporting probability in development

economics of approximately 0.53, calculated as the share of incorrectly accepted null hy-

37To put it differently, the Type II error rate should be no more than four times the usually prescribed
Type I error rate – a convention that is arguably arbitrary and yet routinely followed across different fields
of science (Ioannidis et al. 2017). An alternative approach is to simultaneously determine the optimal
pair of Type I and II errors according to the circumstances and aim of the specific study, as originally
suggested by Neyman and Pearson (1933) and recently reiterated by Ioannidis et al. (2013).

38The problem of insufficient power is by no means specific to economics: Button et al. (2013) estimate
that the median statistical power in neuroscience is 21%.
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potheses over all accepted null hypotheses. Fiedler et al. (2012) argues that researchers’

relatively high tolerance for false negatives has potentially irreversible effects on the devel-

opment of scientific knowledge: since false negative results are less likely to be followed up

than false positives, self-correction is less likely to occur in these cases.

A second channel through which low power threatens the credibility of research findings

is effect inflation: the phenomenon of obtaining “an exaggerated estimate of the magni-

tude of the effect when a true effect is discovered” (Button et al. 2013, p. 366). This prob-

lem is also known as the winner’s curse, the Type M error (Gelman and Carlin 2014) or

the statistical significance filter (Loken and Gelman 2017). Intuitively, effect inflation oc-

curs because in settings where standard errors are large, only those findings that by chance

overestimate the magnitude of the effect will appear statistically significant and thus pass

the threshold for discovery. Effect inflation is therefore more severe in underpowered stud-

ies that are based on small samples in the presence of high measurement error: studies

with power below 50% are likely to yield exaggerated estimates of magnitudes (Gelman

and Carlin 2014). In line with this prediction, Ioannidis et al. (2017) estimate that over

one-third of the average results of economics research are exaggerated by a factor of more

than four, and the majority of reported research is at least twice too large.

The third, less appreciated aspect of statistical power is its relation to false discov-

eries. The connection becomes clear once we abandon the practice of treating a single

finding that has achieved formal statistical significance as conclusive evidence, and instead

consider a Bayesian framework of statistical inference whereby any individual study

contributes to scientific knowledge insofar as it moves our priors regarding the existence of

the effect/association in question. In this framework, studies may be assessed on the basis

of their positive predictive value: the post-study probability that a research finding that

has achieved formal statistical significance is indeed true (Wacholder et al. 2004; Ioanni-
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dis 2005).39 The basic ingredients of this metric are the Type I and II error rates (α and

β, respectively), together with π, the fraction of true associations among all associations

tested in a given field. We treat this fraction as our prior: the pre-study odds that the as-

sociation in question is true (we discuss different ways to obtain priors later in this sec-

tion). The post-study probability (PSP) is then defined as the share of true associations

which are declared true ((1 − β)π) divided by the share of all associations which are de-

clared true ((1−β)π+α(1−π)). As shown in Equation 3 below (reproduced from Maniadis

et al. (2014)), the PSP depends on the power of a study (1− β) in the following way:

PSP =
(1− β)π

(1− β)π + α(1− π)
(3)

In particular, since the derivative of Equation 3 with respect to (1 − β) is positive,

the positive predictive value of a study is increasing in its power. As an example, con-

sider a field where π is 0.1 (i.e. 1 out of 10 examined associations is true) and α is fixed

at 0.05. Using Equation 3, we find that the post-study probability that a statistically sig-

nificant finding is genuinely true is 64% in case the level of power is 80%, but falls to a

mere 31% for a study with 20% power. Statistically significant results from low-powered

studies thus contribute little to scientific knowledge as they lead to a low post-study prob-

ability of the findings being genuinely true. Ignoring the above-described framework of

inference and treating statistically significant results from underpowered studies as con-

clusive evidence for the existence of an effect increases the rate of false discoveries, leading

to low reproducibility of published results and undermining the credibility of the research

field (Munafò et al. 2017; Button et al. 2013). A Bayesian framework also shows that non-

significant results, especially when they are obtained in large datasets, can be more infor-

39The positive predictive value can be understood as the complementary probability of the false positive
reporting probability, defined by Wacholder et al. (2004) as the probability of no true association given a
statistically significant finding.
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mative than significant ones. In particular, rejection of a point null hypothesis is often less

likely to substantially change priors over a large range of values than is a failure to reject

the null (Abadie 2018).

As a side note, we would like to draw attention to the other crucial, yet often over-

looked, ingredient of Equation 3: π, the prior probability (or pre-study odds) that the ef-

fect being tested exists. The post-study probability that a statistically significant finding is

actually true is an increasing function of this prior. Continuing our example above, if the

prior we consider changes from 0.1 to 0.01, the PSP falls from 64% to 14% even if the er-

ror rates remain fixed at levels conventionally deemed adequate (α = 0.05 and β = 0.2).

Consequently, a single “surprise discovery,” i.e., the first study to find a statistically sig-

nificant association in a question where the prior probability was quite low, should only

have a limited impact on our post-study belief that the effect actually exists. Given their

importance, it is crucial to improve our understanding of priors, and to consider the range

of pre-study odds for the question in consideration before running an experiment (Ioanni-

dis 2005). As a general rule, priors are higher in disciplines where empirical research has

sound theoretical foundations than in fields where exploratory research is the norm (Ma-

niadis et al. 2017).40 Abadie (2018) provides a numerical example for constructing a prior

distribution for experimental economics studies, using estimates from a replication project

we discuss in Section 5 (Camerer et al. 2016; Andrews and Kasy 2017). Obtaining prior

probabilities for any particular research question is less than straightforward. One solution

is to calculate the PSP using a range of possible values for priors, as demonstrated in e.g.

Maniadis et al. (2014). Alternatively, estimates for the pre-study odds may be obtained by

consulting experts. As examples, consider Groh et al. (2016) who undertake an “audience

expectation elicitation exercise” by collecting treatment effect estimates from members

40Card et al. (2011) estimate that 68% of economic field experiments are purely descriptive in the sense
that they do not contain even a single line of formal mathematical modeling.



41

of their audience prior to presenting their results, Coville and Vivalt (2017) who survey a

panel of researchers to collect anticipated effects in various development economics stud-

ies, or DellaVigna and Pope (2018) who compare expert and non-expert forecasts. Finally,

Dreber et al. (2015) use prediction markets to obtain estimates for prior probabilities of

specific hypotheses being true.

In the above discussion of the mechanics of statistical inference we have ignored any

“researcher degrees of freedom” in the design, analysis and reporting that may lead

to identifying effects even in the absence of a true association. Recent studies indicate

that both specification searching (the practice of trying out several specifications and se-

lectively reporting outcomes that support the researcher’s intended conclusion, see e.g.

Simmons et al. (2011); Brodeur et al. (2016)) and publication bias (the greater tendency

of researchers to submit and editors to publish studies with significant rather than non-

significant findings, also known as the ”file drawer problem”, see e.g. Doucouliagos and

Stanley (2013); Christensen and Miguel (2018); Andrews and Kasy (2017)) are prevalent

in empirical economics. As Ioannidis (2005) points out, such bias also reduces the post-

study probability of a positive finding actually being true.41 Repeated independent testing

by different teams of investigators further lowers the PSP: intuitively, the positive predic-

tive value in this case reflects the fact that only 1 out of n independent studies found a

positive association (in Section 5 we discuss how the PSP changes when r out of n inde-

pendent studies find evidence for the existence of an effect).

In sum, an exclusive reliance on formal statistical significance and inadequate atten-

tion to the other ingredients determining a study’s positive predictive value (PPV: priors,

bias, competition, and, crucially, statistical power) compromise researchers’ ability to draw

correct inferences from data. Moreover, while reporting the PPV helps emphasize the in-

41In the presence of such practices, the positive predictive value may be calculated as follows, where

u indicates the extent of bias: PSP = (1−β)π+βπu
(1−β)π+βπu+[α+(1−α)u](1−π) . Maniadis et al. (2017) discuss the

determinants of u for a given discipline.
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formativeness of a study, it revolves around the “existence” of an effect rather than around

effect sizes. Many statisticians call for a departure from methods that focus on testing to-

wards those that emphasize estimation, such as confidence, credibility or prediction inter-

vals (Wasserstein and Lazar 2016; Munafò et al. 2017) or even “hacking intervals” (Coker

et al. 2018).42

On the other hand, consumers of research might still find the practice of using a p-

value threshold as an established standard for evaluating research findings helpful. Given

that the scientific community continues to rely on a universally accepted p-value cut-off,

a group of scientists now proposes to make this standard more stringent: Benjamin et al.

(2017) argue that novel findings should be labeled as “statistically significant” only if they

pass a p-value threshold of 0.005 and recommend treating evidence with p-values between

0.005 and 0.05 merely as “suggestive.”. Their proposal promises to reduce false positive

rates to acceptable levels in most professions. The proposal sparked an intense debate,

with critiques calling for removing (Amrhein and Greenland 2018) or abandoning (Mc-

Shane et al. 2019), rather than redefining, statistical significance, and suggesting a new

approach to reporting results whereby researchers transparently present and justify their

design choices, including their chosen significance level (Lakens et al. 2018).

This lively debate signals a growing interest among experimental scientists in the is-

sue of proper inference, a welcome development that we hope will translate into actual

changes in practices and norms in the scientific community. In the following sections we

review several practical recommendations that have the potential to substantially improve

the reliability of scientific results. In Section 5 we begin with what we see as the most

pressing issue currently: we discuss the importance of replications, and present incentive-

compatible methods to encourage them.

42Sterck (2018)suggests assessing the economic importance of a regressor by measuring the percentage
contribution of the given explanatory variable to the variation in the dependent variable, and offers two
alternatives for handling the variation induced by explanatory variables that are correlated.
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5 Replicate early and often

We believe that the best approach to increasing the reliability of results from experimental

economics lies in replication. Recent controversies surrounding topics such as ego depletion

in the psychology literature (Hagger and Chatzisarantis 2016; Hagger et al. 2010; Carter

and McCullough 2014) or the impact of de-worming programs in development economics

(Croke et al. 2016) all highlight the importance of replications. In the following we define

what we consider replication, and demonstrate using a Bayesian framework of inference

why it is crucial for the credibility of science. We then discuss what the “natural rate of

replication” and the rate of reproducibility in economics are today. Additionally, we review

several proposals to incentivize replication.43

As Clemens (2015) points out, there is currently no universally accepted standard in

economics as to what exactly constitutes a replication. Levitt and List (2009) propose def-

initions that are well-suited to experimental studies. In the most narrow interpretation, a

replication means taking the original data generated by an experiment and re-analyzing

it to confirm the original findings. In the terminology of Hamermesh (2007), this would

constitute a pure replication: examining the same question and model using the un-

derlying original data set. This approach may help to address issues with the internal

validity of a study, for instance through uncovering coding errors or mistakes in calcula-

tions.44 A broader interpretation of replication in experiments involves running a new ex-

periment closely following the original protocol to test whether similar results can be gen-

erated using a new subject pool. Such a study would be classified as statistical replica-

tion: based on a different sample, but using an identical model and underlying population

43Other valuable methods aimed to serve the goal of “research synthesis” are literature surveys and
meta-analyses; for reviews on these methods, refer to e.g. Anderson and Kichkha (2017); Maniadis et al.
(2017); Maniadis and Tufano (2017).

44Even without an explicit mistake on the researchers’ side, empirical results are not necessarily robust;
as an example, consider McCullough and Vinod (2003) who report that nonlinear maximization methods
from different software packages often produce wildly different estimates.
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(Hamermesh 2007). This method has the potential to fix sampling errors or insufficient

power. Finally, the third and broadest category entails testing the hypotheses of the orig-

inal study using a new research design. This characterization is a scientific replication

according to Hamermesh (2007), as it involves a different sample, a different population, a

different situation, and a perhaps similar but not identical model. These replications help

assess the robustness of the original finding, and may inform discussions on the generaliz-

ability of the original result (see Section 1).45

To illustrate why statistical replications are crucial, let us return to the Bayesian frame-

work of inference introduced in Section 4. Equation 3 presented the post-study probability

(PSP) of a finding actually being true, conditional on a single study providing statistical

evidence in favor of its existence. Following Moonesinghe et al. (2007), we can adapt this

formula to calculate the PSP when at least r out of n independent studies find a signifi-

cant result for the association in question. As before, we obtain the PSP as the fraction of

true associations declared true over all associations declared true:

PSP =
π
∑n

i=r

(
n
i

)
(1− β)iβ(n−i)

π
∑n

i=r

(
n
i

)
(1− β)iβ(n−i) + (1− π)

∑n
i=r

(
n
i

)
αi(1− α)(n−i) (4)

Using Formula 4, Moonesinghe et al. (2007) and Maniadis et al. (2014) demonstrate how

a few successful replications can increase the positive predictive value of a finding. This

increase is particularly dramatic in cases when prior probabilities are low.46 Within the

same framework, Coffman and Niederle (2015) argue that even the most inaccurate beliefs

45Clemens (2015) suggests an alternative classification, differentiating between replication tests (includ-
ing verification and reproduction tests) and robustness tests (including reanalysis and extension tests). See
also the discussion in Duvendack et al. (2017).

46Consider the following example, based on Maniadis et al. (2014): n = 15 researchers independently
run the same study with 80% power to detect an association that has a 10% prior probability of be-
ing true. When a single study out of the fifteen attempts finds a statistically significant association (i.e.
r = 1), then the post-study probability that this positive finding is actually true is a mere 17% (remember
that the corresponding PSP was well above 50% in the absence of researcher competition (i.e. n = 1), see
Section 4). However, the post-study probability that the association in question really exists increases to
over 90% in case of just two successful replications.
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can be corrected within three to five replications.47

Despite a general consensus among economists regarding the importance of replica-

tion, it remains largely “an ideal to be professed but not practiced” (Mueller-Langer et al.

2019). Incentives for individual researchers to replicate a project or to have their own

work replicated are low or missing entirely. Replications typically bring little recognition

for their authors despite the substantial work they entail. The process is particularly te-

dious because data and code for published articles are often unavailable – even though

most leading economics journals have introduced data sharing requirements and manda-

tory data archives, such policies are not necessarily enforced (Höffler 2017). As Duven-

dack et al. (2017) observe, replications are usually regarded as unoriginal or “derivative”.

Worse, they may ignite animosity among researchers if authors of the original work treat

replication attempts as threats. Moreover, journals may be reluctant to publish replica-

tion studies for fear of not receiving enough citations (Duvendack et al. 2017). Indeed,

according to a survey by Mueller-Langer et al. (2019), from 1974 to 2014 less than 0.1%

of publications in the top-50 economics journals were replications. Given the difficulties of

publishing a ‘mere replication,’ conducting an extension study where the control treatment

replicates a previous finding is often a more attractive alternative. This, however, makes

replications hard to identify: as Coffman et al. (2017) point out, such ‘implicit replica-

tions’ are often reported as part of a paper with a much larger scope, without being la-

beled as replications. Other times, successful replications are simply not considered inter-

esting enough to be published. As a result, it is less than straightforward to assess how

often replications actually occur.

A few recent papers attempt to address this issue and estimate the “natural rate of

replication” in economics. First, Berry et al. (2017) focus on all the empirical papers pub-

47For a more nuanced approach that takes into account various forms of researcher bias among the
replicators, see Maniadis et al. (2017).
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lished in the centenary volume (2010) of the American Economic Review, and manually

code all their published citations as either replications, robustness tests, extensions, or

none of the above. They find that less than a third of the 70 papers have been replicated

at least once, where a replication is defined as a project “speaking directly to the verac-

ity of the original paper.” Validating the assertion that the visibility of replications is low,

Berry et al. (2017) find considerable uncertainty among the authors of the original papers

over the number of extant replications of their studies. Second, Sukhtankar (2017) ana-

lyzes 1056 empirical papers in development economics published in the top ten general

interest journals between 2000 through 2015, perform a reverse citation search, then search

within the ensuing list for “replication” or alternative cognates. His results suggest that

only 5.4% of the studies in their sample were replicated in a published paper or a work-

ing paper, the rate being higher (12.5%) for studies based on randomized controlled trials.

Third, Hamermesh (2017) collects ten leading papers from labor economics with at least

20 years of citation history, and classifies their citing papers as either i) related to, ii) in-

spired by, iii) very similar to but using different data, or iv) a direct replication at least

partly using the same data. He finds that of the more than 3000 citing studies, only 0.6%

fall into the last category. On the other hand, 7 out of the 10 original studies he surveyed

were replicated at least five times, and all of them at least once. Finally, Maniadis et al.

(2017) survey experimental papers published between 1975–2014 in the top 150 journals

in economics, and estimate that the fraction of replication studies among all experimental

papers in their sample is 4.2% (taking into account ‘implicit replications’ as well). Over-

all, these studies suggest that the natural rate of replication in empirical economics is low,

although heavily cited and influential papers do tend to get replicated.

The above results concern the rate at which replications are attempted, leaving aside

the question of what share of these replications is positive, i.e. confirm the findings of the

original study. Measuring rates of reproducibility in economics dates back to the quest of
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Dewald et al. (1986) to replicate findings from articles published in the Journal of Money,

Credit and Banking. The authors famously concluded that inadvertent errors were a “com-

monplace rather than a rare occurrence.” Another key insight of the Dewald et al. (1986)

study was the alarmingly high share of authors who were unwilling or unable to supply

their data and code to the replicators. According to Chang and Li (2017), this problem is

still pervasive: in their attempt to replicate macroeconomic papers published in 13 well-

regarded journals, the greatest obstacle they faced was authors’ failure to provide their

data and code files. As a result, they were only able to qualitatively reproduce the key re-

sults of 29 out of the 59 papers they sampled.

Focusing on experimental economics specifically, Deck et al. (2015) review several repli-

cation attempts, mostly in the context of public goods provision, with varying outcomes.

The first systematic evidence of replicability of laboratory experiments in economics is

provided by Camerer et al. (2016) who replicate 18 studies published in the American Eco-

nomic Review and the Quarterly Journal of Economics between 2011 and 2014, according

to pre-analysis plans posted prior to conducting the replication studies. They find a sig-

nificant effect in the same direction as in the original study in 11 out of the 18 studies,

corresponding to a reproducibility rate of 61%.48 They also discuss alternative replication

indicators, e.g. whether the 95% confidence interval of the replication effect size includes

the original effect size, or whether the replicated effect lies in a 95% prediction interval.

These measures suggest higher rates of replicability (66.7% and 83.3%, respectively). The

authors also compare the replicated effect sizes with the original, and find a mean relative

effect size of 65.9%. The finding that the replicated effect sizes tend to be smaller than the

48While lower than desirable, this share is considerably higher than the replicability rates uncovered
in the Reproducibility Project: Psychology (RPP) (Open Science Collaboration 2015), a project that in-
volved replicating 100 studies published in three psychology journals. Their results paint a rather grim
picture of the reliability of psychological research: while 97% of the original studies found significant re-
sults, only 36% of the replications were able to reproduce these significant findings. In the Many Labs 2
project, 15 of the 28 attempted replications provided evidence in the same direction as the original finding
and statistically significant at the 5% level (Klein et al. 2018).
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original ones reflects the effect size inflation phenomenon discussed in Section 4. Overall,

Camerer et al. (2016) interpret their findings as suggesting “relatively good replicability of

results.”

Another noteworthy replication initiative is the Social Sciences Replication Project,

whose collaborators aimed to replicate 21 experimental studies in the social sciences pub-

lished in the prestigious journals Nature and Science between 2010 and 2015. They find a

significant effect in the same direction as the original study for 13 (62%) studies, and the

effect size of the replications is on average about 50% of the original effect size (Camerer

et al. 2018). Finally, while both of the above-mentioned projects focus on results published

in top journals, Maniadis et al. (2017) analyze replication attempts from 150 economic

journals, and find a “success rate” of 42.3% among the 85 experimental replication stud-

ies in their sample.

The recent surge of interest in reproducibility also ignited an intense discussion about

the most effective ways to incentivize replications. We conclude this section by review-

ing a few suggestions that we find particularly promising. The first set of ideas addresses

the current difficulty of publishing replication studies, suggesting the creation of a spe-

cific outlet in the form of a new journal dedicated to replications (Coffman and Niederle

2015), or including one-page “replication reports” in top journals (Coffman et al. 2017).

The recent launch of the Journal of the Economic Science Association, with a special sec-

tion devoted to replications, is a promising step in this direction. These suggestions could

be especially effective coupled with a new norm that requires citing replication work along-

side the original, increasing the returns both to the publishing journals and to the authors

of the replications. In addition, departments should consider systematically incorporating

into their hiring and tenure decisions an assessment of whether a researcher has promoted

transparency in their career through replication and data sharing.

Second, Maniadis et al. (2015) emphasize the need to change authors’ incentives to col-

http://www.socialsciencesreplicationproject.com
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laborate with replicators.49 In their view, journals should always allow original authors

to give their commentaries after a replication attempt; they also suggest considering the

number of replication attempts as a metric for one’s research quality. Third, Butera and

List (2017) design a new, incentive-compatible mechanism whereby the original investiga-

tors of a study commit to only publishing their results as a working paper, and offer co-

authorship of a second paper (submitted to a peer-reviewed journal) to other researchers

who are willing to independently replicate their experimental protocol in their own re-

search facilities. This mechanism allows the original authors to signal the ownership of

the research idea, while ensuring the credibility of their results (in case they indeed repli-

cate). At the same time, scholars on the team of replicators, in return for bearing the cost

of replications, would benefit from coauthoring a novel study. Finally, Dreber et al. (2015)

suggest using prediction markets with experts as quick and low cost ways to obtain infor-

mation about reproducibility.50

Combined, these approaches have the potential to make replication more prevalent by

increasing its attractiveness to researchers. Such a shift in attitudes could also have pos-

itive consequences on how research is conducted in the first place: as Duvendack et al.

(2017) point out, replication may have a deterrent effect on questionable or fraudulent re-

search practices by increasing the likelihood that such practices will be discovered. The

profession as a whole could benefit from a culture that recognizes the intrinsic value of

replications.

In sum, replication serves to prevent, expose and correct wrong inferences, and is thus

49See also Maniadis et al. (2017) for a systematic review on the problem of information revelation in
science.

50Dreber et al. (2015) set up prediction markets in conjunction with the Reproducibility Project: Psy-
chology (described in footnote 48) where participants could bet on the success of the attempted replica-
tions. Prediction markets were found to predict the outcomes of the replications well, performing better
than a survey of participants’ individual forecasts. While Camerer et al. (2016) confirm the result that
beliefs elicited though a prediction markets are positively correlated with a successful replications, they do
not find that this method works better than belief elicitation through a survey.
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inevitable for producing empirical results that can reliably form the basis of both economic

theory and policy. However, replication does not eliminate the need for well-powered stud-

ies: replication projects with low statistical power contribute little to the evidence in favor

of or against a hypothesis. In the next section, we follow this line of reasoning by urging

researchers to perform ex ante power calculations and to design their experiments in ways

that maximize statistical power.

6 Consider statistical power in the design phase

As discussed in Section 4, insufficient statistical power in experiments poses a major chal-

lenge to proper inference. The most straightforward remedy, of course, is to avoid conduct-

ing low-powered studies in the first place. In case of experiments, this requires taking the

question of statistical power seriously in the design phase. In the following, we describe

the basic principles of optimal sample size calculations, and then review sample arrange-

ment practices that maximize power given the available budget. The section is intended

as a overview of the most important considerations; the interested reader can find more

details in List et al. (2011), Duflo et al. (2007) and Cox and Reid (2000).

Power calculations (i.e. the assessment of the precision of inferences expected to be

achieved with a given sample size), or optimal sample size calculations (i.e. the estimation

of the sample size required to attain a certain precision), are crucial steps prior to con-

ducting an experiment (Gelman and Hill 2007).51 Power calculations are most often ad-

vocated as tools for preventing high rates of false negatives. They also increase efficiency

by ensuring that scarce resources are not wasted on studies that are larger than necessary.

51Gelman and Carlin (2014) go a step further and suggest performing what they call a “design analy-
sis,” complementing power calculations with an assessment of the sign error rates (the probability that
the replicated estimate has the incorrect sign, if it is statistically significantly different from zero) and
the exaggeration ratio (the expectation of the absolute value of the estimate divided by the effect size, if
statistically significantly different from zero).
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Moreover, pre-determining sample sizes can curb bias by reducing experimenters’ temp-

tation to collect more data when initial results are insignificant but “go in the right di-

rection” – a practice that could lead to high rates of false positives (Zhang and Ortmann

2013). Despite these arguments, in practice researchers often forgo ex ante sample size cal-

culations and rely on shortcuts with little theoretical justification when designing their

experiments.52

As discussed in Section 4, sample size calculations are rooted in the framework of hy-

pothesis testing. As such, they require researchers to specify (1) a null hypothesis and an

alternative hypothesis, (2) the desired significance level and power of the test and (3) the

statistical test to be used in the subsequent analysis (List et al. 2011). These considera-

tions allow the researcher to simultaneously control the likelihood of committing either

a Type I or a Type II error. In particular, by considering the hypothetical distributions

of the test statistic under the null and the alternative hypothesis, the researcher obtains

critical values for the test statistic corresponding to the pre-specified error rates. The null

hypothesis for a test is typically specified as no effect/association, while the alternative hy-

pothesis typically postulates that the effect size is at least as large as a specific value. Al-

ternatively, for a given budget and thus fixed sample size, one can calculate the minimum

detectable effect size given the pre-specified acceptable error rates.

While the researcher has discretion over these three building blocks of power calcula-

tions (hypotheses; acceptable error rates; the test used for comparison), translating critical

values to optimal sample size requires knowledge of the variance of the outcome – a pa-

rameter unknown prior to conducting the experiment. This feature makes ex ante power

calculations inherently hypothetical, as they are based on the researcher’s expectations

about the underlying data generating process (Gelman and Carlin 2014). However, one

52List et al. (2011) mention the practice of assigning 30 subjects to each treatment arm as an example
for a widely used yet theoretically unfounded rule-of-thumb.
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should not use the hypothetical nature of power calculations as an excuse for skipping

this step in the design phase. Researchers can use data from previous experiments or pilot

studies to form beliefs about the variance of outcomes. It is also instructive to calculate

the statistical power for a range of different hypothesized values of the variance. When

deciding what effect size to target, researchers should consider what difference is actually

practically or economically relevant – an aspect that is still largely overlooked both at the

design and the inference stage.53 A useful practice is to express minimum detectable effect

sizes in terms of standard deviation changes to facilitate comparison with existing studies

in the field (e.g., the researcher may desire to have her experiment detect a 0.1 standard

deviation treatment effect).

We demonstrate the framework of power calculations through a simple example adapted

from Section 3.1 of List et al. (2011). Suppose we are interested in estimating the average

treatment effect from an experiment where participants are randomly assigned to either

the treatment or the control group. For now, assume that we only test a single hypothe-

sis in our study (more on multiple comparisons later). For simplicity, we assume that our

data is generated by the following model:

Yi = β + τDi + εi,

where Yi is a continuous outcome variable, Di is a binary treatment indicator, the esti-

mated treatment effect is homogeneous, and εi is an idiosyncratic error term with variance

σ2
ε . Throughout this example, we assume that the unobserved components of outcomes

are independently distributed among our subjects, and relegate the discussion of inference

with grouped errors to later in the section. Errors may be heteroscedastic: we allow the

53Ziliak and McCloskey (2004) review papers published in the American Economic Review and find that
the share of papers discussing effect sizes rather than merely the significance (and maybe the sign of the
estimated coefficients) is still low.
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variances of the error term in the control (σ2
C) and the treatment conditions (σ2

T ) to vary.

Assuming normality, we use a two-sided t-test for comparing the means of the outcome

variable between the groups. These assumptions allow us to derive simple and intuitive

closed-form solutions for the optimal sample size or the minimum detectable effect size.

There are nC and nT subjects in the control and the treatment groups. Due to random

assignment, the estimated average treatment effect is obtained simply as the difference in

means between the treatment and the control group: τ̂ = ȲT − ȲC , with variance: V̂ =

Var(ȲT )+Var(ȲC)−2Cov(Var(ȲT ),Var(ȲC)) = σ2
T/nT+σ2

C/nC .54 Our goal in this exercise is

to determine the smallest true effect size we can detect given our sample size and required

statistical significance and power.

To begin, let us assume that the null hypothesis is true: the true average treatment ef-

fect is zero. The hypothetical distribution of the estimated treatment effects is then cen-

tered around zero, as shown in the top panel of Figure 1. As aforementioned, in order to

control the Type I error at a rate of α, we reject the null hypothesis only if we observe a

t-statistic that is equal to or more extreme than our critical value. Equation 5 summa-

rizes this condition: the left hand side of the equation is the t statistic estimated from a

test comparing the means of the outcome variable in the control and the treatment group

assuming that the true average treatment effect is zero, while tα/2 is the critical value cor-

responding to a false positive rate of α in a two-sided test.

ȲT − ȲC√
σ2
C

nC
+

σ2
T

nT

≥ tα/2 (5)

Now consider the distribution of the treatment effect under the alternative hypothesis,

54Note that the true variances in the treatment and control groups are typically unknown a priori and
are themselves estimated from the data, often by means of the Neyman variance estimator, a conservative
randomization-based approach (Samii and Aronow 2012).
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δ

tα/2 tβ

β = P(Type II Error)

α = P(Type I Error)

Accept H0Reject H0 RejectH0

Figure 1: Hypothetical distributions of the estimated treatment effect under H0 and Ha

assuming a true effect size of δ. The hypothetical distribution of the estimated treatment

effects under this alternative hypothesis is shown in the bottom panel of Figure 1. The

power of our test to identify a true effect size of δ can be thought of as the fraction of the

area under this distribution that falls to the right of the critical value tα/2: this is the re-

gion where we correctly reject the null hypothesis. Limiting the Type II error rate to β

(resulting in a statistical power of 1 − β for our test), we can calculate the minimum de-

tectable effect size of our experiment: the smallest value for which we can (correctly)

reject the null hypothesis of no treatment effect with probability 1 − β at a significance

level of α. This minimum detectable effect size δmin can be expressed as a function of the
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sample sizes and variances in the control and treatment groups as:

δmin = (tα/2 + tβ)

√
σ2
C

nC
+
σ2
T

nT
= (tα/2 + tβ)

√
V̂ (6)

Equation 6 shows that the lower the variance of the treatment effect estimator, the

smaller the effect size we can detect. This estimated variance, in turn, depends on the

sample sizes and the variances of the error terms in the two groups.55 Equation 6 can be

re-arranged to determine the sample sizes in the treatment and the control group that are

required to detect a treatment effect of the size of δ given the variance of the estimator

and the pre-specified Type I and II error rates.

Analytical power calculations such as the example presented above are useful for simple

comparisons. For non-parametric tests and more complex or more specific design choices,

simulation-based power calculations provide more flexibility. These approaches require the

researcher to specify the underlying model complete with the experimental design and

sample sizes, the values of the covariates, the parameter values expressing the distribu-

tion of the outcome variable under the alternative hypothesis, and the variances (Feiveson

2002). Based on this model, the researchers generate their synthetic data and run their es-

timation on these data a large number of times, obtaining a p-value in each round of the

simulations. Power is then calculated as the proportion of p-values that are lower than the

pre-specified cutoff value α. Several recent papers provide more details along with software

packages that implement simulation-based power calculations (Feiveson 2002; Luedicke

2013; Bellemare et al. 2016; Burlig et al. 2017).

While often not flexible enough for practical purposes, Equation 6 can still provide

55As a numerical example, consider an experiment where a total of 2000 participants are equally divided
between a treatment and a control group (nC = nT = 1000), and we assume equal variances in the two
groups (σC = σT = σ). Assuming α = 0.05 and β = 0.2, using a two-sided t-test we can then detect a min-

imum effect size of 0.125 standard deviation: δmin = (t0.025 + t0.2)
√

σ2

1000 + σ2

1000 = (1.96 + 0.84)
√

1/500σ ≈
0.125σ
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valuable insights for the derivation of basic heuristics intended to maximize the preci-

sion of a study through design. A straightforward way to increase power is to increase

the number of observations – this, however, is often impossible due to budget constraints

or other practical considerations. We thus focus on sample arrangement techniques for a

given experimental budget that aim to reduce the variance of the estimate through other

channels.

The first such rule concerns the assignment of subject to treatment or control groups.

While it is common to assign equal number of subjects to all conditions, studying Equa-

tion 6 we find that this practice is only optimal in case we expect the variances to be the

same across groups. Otherwise, the ideal ratio of the sample sizes assigned to treatment

and control is equal to the ratio of the standard deviation of outcomes in the two groups.

For the special case of a binary outcome variable, the same logic implies that sample sizes

in the treatment and control groups should only be equal in case the null hypothesis pre-

dicts equal means – and thus equal variances – between the two groups.

The optimal design also takes potential heterogeneity in data collection costs into ac-

count to maximize power for a given experimental budget. The unit cost of obtaining an

extra subject might differ between treatment and control groups. Intuitively, providing a

treatment is often a lot more costly than simply surveying someone or relying on admin-

istrative data in the control condition (Duflo et al. 2007). It can be shown that the opti-

mal share of subjects assigned to treatment versus control is inversely proportional to the

square root of the respective sampling unit costs (List et al. 2011).

So far we have focused on experiments with a binary treatment indicator. In studies

where the experimenter can choose different levels of treatment intensity, precision may be

increased through design that maximizes the variance of the treatment variable. In par-

ticular, the number of subjects allocated to the different levels of treatment should reflect

our priors of the functional form of the treatment effect. Identification requires the num-
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ber of treatment cells used to be equal to the highest polynomial order plus one (List et al.

2011). For instance, assuming a quadratic treatment effect, we should allocate subjects to

three treatment cells at the two extremes and at the midpoint of the feasible range, assign-

ing one-fourth of subjects to each extreme and half to the midpoint for maximum varia-

tion in the treatment variable.

Power calculations also need to account for the randomization technique used to as-

sign subjects to specific treatments. Cluster-randomized designs, where the unit of ran-

domization does not coincide with the unit of analysis, are commonly used in field exper-

iments. For instance, even if student-level data is available, institutional constraints or

fear of spillovers might induce researchers to randomize at the classroom or school level.

In such cases, our assumption of i.i.d. error terms is often not justified. Clustered de-

signs therefore necessitate power analysis that accounts for group-level shocks (see Duflo

et al. (2007) who derive the expression for the variance of the estimated treatment effect

in cluster-randomized designs, Abadie et al. (2017) on when to adjust standard errors for

clustering, and Young (2016) for a degree-of-freedom correction for robust and clustered

covariance matrix estimates). Optimal design in such experiments balances two oppos-

ing forces: for a given number of experimental subjects, increasing the number of clusters

we sample from leads to greater gains in power than sampling additional individuals from

already included clusters. However, adding a participant from a new cluster tends to be

more expensive than another participant from an existing cluster. Additionally, Chandar

et al. (2018) argue that in case of heterogeneous treatment effects at the cluster level, the

researcher may want to include more treated clusters than control clusters.56 We return

to the question of treatment assignment in Sections 8 and 9 where we discuss in detail the

practice of blocked randomization and within subject designs.

56The intuition is that if the researcher’s intervention leads to different effects across different clusters,
having more treated clusters can help average over those differences and recover the mean effect (Chandar
et al. 2018).
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Finally, we would like to draw attention to an implicit assumption we made through-

out this section: we assumed that participants comply with their treatment assignment.

However, as we have discussed in Section 1, compliance is often imperfect. In overt field

experiments that randomize access to a particular program or service (common in devel-

opment economics), take-up of the offered treatment is often low, jeopardizing researchers’

ability to detect the impact of the program. McKenzie (2011) points out that the sample

size required to detect a given change resulting from a treatment is inversely proportional

to the difference in the proportion of the treatment group that takes up a given interven-

tion relative to the control group.

We end this section by re-iterating an important qualification to the above-described

framework: it discusses power calculations in cases of a single comparison, whereas most

studies test multiple hypotheses. In the following section, we discuss different manifesta-

tions of the multiple comparisons problem, and show how the experimental design and the

statistical analysis should be modified to account for multiple hypothesis testing.

7 Adjust for multiple hypothesis testing, in power tests

and in data analysis

In the previous section we derived our results based on the assumption that researchers

evaluate a single hypothesis. In practice, however, most research in applied economics en-

tails more than one comparison performed within the same study. Multiple hypothesis

testing (MHT), or the multiple comparisons problem, refers to the practice of simulta-

neously considering multiple statistical inferences (Miller 1981). Failure to account and

correct for multiple hypothesis testing increases the likelihood of false positives and con-

tributes to the replicability crisis of the social sciences (List et al. 2019b). As an example,

consider a study wherein a researcher jointly tests N mutually independent hypotheses, all
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of which are true and therefore should be accepted. Fixing the Type I error rate for a sin-

gle comparison at a level α, the probability of at least one false rejection among all com-

parisons in this case is 1− (1− α)N . Setting α = 0.05, the probability of observing at least

one false positive is over 14% in case of just three hypotheses, and it exceeds 50% when

testing 14 or more hypotheses. In the following, we provide an overview of the prevalence

of the problem in the literature, and discuss possible solutions.

The practice of ignoring multiple hypothesis testing corrections is pervasive in experi-

mental social sciences. List et al. (2019b) differentiate between three main cases of multi-

ple hypothesis testing. The most common occurrence involves analyzing the impact of an

intervention on multiple outcomes. According to an overview by Anderson (2008), 81%

of surveyed papers published from 2004 to 2006 report results on at least five outcomes,

and a striking 61% consider ten or more outcomes (the number of unreported comparisons

is likely to be even higher). Yet only 7% of these papers account for multiple hypothesis

testing in their inference. The second widespread form of MHT entails comparisons across

multiple subgroups of the study population. Analyzing heterogeneous response to treat-

ment by gender, ethnicity, age, etc. falls into this category. Finally, analyzing experiments

with multiple treatments (either estimating the effect of each treatment condition ver-

sus a control, or performing all possible pairwise comparisons across multiple treatments

and a control) also constitutes a case of MHT.

There are three main approaches to managing the multiple hypothesis testing prob-

lem: (1) reduce the number of comparisons carried out, (2) use machine learning (ML)

techniques to deal with several different outcomes or dimensions of heterogeneity in a flex-

ible and principled way, and/or (3) adjust the statistical inference to take into account the

family of hypotheses considered in the analysis. The first approach involves restricting the

analysis to a specific set of outcomes based on a priori notions of importance, and/or us-

ing summary index tests that pool multiple outcomes into a single measure (Ander-
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son 2008). The second approach makes use of machine learning techniques by reframing

the problem as a prediction rather than an estimation task. Instead of testing whether the

treatment affected different outcome measures, ML techniques instead ask whether treat-

ment assignment can be predicted from a set of observable outcomes (Mullainathan and

Spiess 2017). Similarly, rather than testing multiple potential dimensions of heterogeneity

specified by the researcher, ML techniques seek to identify subgroups such that treatment

effects are similar within and different across groups, allowing the researcher to discover

more flexible forms of heterogeneity (Athey and Imbens 2017b).57

The third method (the focus of this section) accounts for the multitude of tests carried

out by adjusting the inference from the analysis. Multiple testing procedures often control

the family-wise error rate: the probability of rejecting at least one true null hypothesis

among a set of hypotheses we jointly test (Heckman et al. 2010).58 Alternatively, when the

number of hypotheses tested is very large, researchers often choose instead to control the

m-familywise error rate (the probability of m or more false rejections), the tail probability

of the false discovery proportion (the fraction of false rejections), or the false discovery

rate (the expectation of the proportion of rejected true null hypotheses among the rejected

hypotheses) (Benjamini and Hochberg 1995; Benjamini et al. 2006; List et al. 2019b)

Different techniques have been developed to adjust the standards of inference to take

into account multiple hypothesis testing. Single-step procedures simultaneously com-

pare all the individual test statistics from the different comparisons to their critical values.

Often (though not always) the same critical value is used for all comparisons. As an ex-

ample, consider the most well known multiple testing procedure developed by Bonferroni

57For correct inference, Athey and Imbens (2016) propose an “honest” approach, whereby one sample
is used to divide participants into subgroups and another to estimate treatment effects for each subgroup.
We further discuss the use of ML techniques for studying heterogeneous treatment effects in Section 9.

58What constitutes a “family” of comparisons is not always straightforward to determine. In general,
the decision should be guided by the conceptual/theoretical similarity of the tests. For a helpful discus-
sion, we recommend the related blog post by Daniel Lakens: “Why you don’t need to adjust your alpha
level for all tests you’ll do in your lifetime”.

http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
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(1935), applied to the calculation of confidence intervals by Dunn (1961). This technique

consists of computing an individual p-value for each hypothesis tested, and rejecting a hy-

pothesis only if its p-value does not exceed α/S, where S is the total number of compar-

isons performed. Under the assumption that the null distribution of each p-value is uni-

form, this method asymptotically controls the family-wise error rate at level α (Romano

and Wolf 2005).

Stepwise methods of multiple testing procedures also start with a single-step method.

However, instead of stopping after the first set of comparisons, these methods allow the

researchers to reject further hypotheses in subsequent steps by decreasing the critical val-

ues for the remaining hypotheses, taking into account the hypotheses already rejected in

previous steps. The methods continue until no further hypotheses are rejected (Romano

and Wolf 2010). Stepwise procedures can be further classified into stepdown and stepup

methods. Stepdown methods begin by considering the most significant hypotheses, and

then continue to evaluate hypotheses with smaller test statistics. Romano and Wolf (2010)

show that the classical method of Holm (1979) can be formulated as a stepdown procedure

where the criterion for rejection for the most significant hypothesis is the same as in the

Bonferroni-method, but the criteria get less strict for larger p-values.59

The appeal of the traditional methods of Bonferroni (1935) and Holm (1979) lie in their

simplicity – however, they are often overly conservative. Procedures with more power to

reject false null hypotheses have been designed by taking into account the joint depen-

dence structure of the individual p-values (e.g. Romano and Wolf 2005; Heckman et al.

2010).60 Based on Romano and Wolf (2010), List et al. (2019b) developed a bootstrap

multiple hypothesis testing procedure that asymptotically controls the family-wise error

rate under fairly weak assumptions. Their procedure was designed to simultaneously han-

59For an example for a stepup procedure, refer to e.g. Benjamini and Hochberg (1995).
60For a discussion on the meaning of power in a multiple hypothesis testing context, refer to Romano

and Wolf (2005).
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dle all three scenarios of MHT in experimental economics discussed above. The method is

asymptotically balanced in that the marginal probability of rejecting any true null hypoth-

esis is approximately equal in large samples, and provides an improvement over classical

methods in terms of power through incorporating information on the dependence structure

(and can lead to further gains by exploiting logical restrictions across null hypotheses in

case of multiple treatment arms).61

Accounting for multiple hypothesis testing often leads to different conclusions than

inference that ignores the multitude of tests carried out at once. For instance, Lee and

Shaikh (2014) demonstrate how the significance of PROGRESA’s estimated effects on

school enrollment across sub-populations change once we account for multiple inferences.

While demonstrating their approach to correcting for MHT, List et al. (2019b) also show

a large reduction in the number of null hypotheses rejected in Karlan and List (2007) once

multiple testing is taken into account. These examples serve to encourage researchers to

identify and properly correct for all the different comparisons within a study to avoid the

false positives that mechanically result from multiple testing.

Besides ex post corrections, researchers should pre-emptively take into account the prob-

lem of multiple hypothesis testing in the design phase. Intuitively, to control the false pos-

itive rate across all comparisons, stricter significance level requirements should be applied

for each individual test ex ante. In practice, this means specifying lower levels of α in the

power calculation for each comparison (see Section 6 for details on power calculations for

single comparisons). Acknowledging this imperative already in the design phase reveals

a “hidden cost” of adding another outcome, treatment arm, or subsample analysis to an

experiment: every additional comparison the researcher plans to perform increases in all

existing comparisons the number of participants (or the precision of measurement) that

61List et al. (2019b) made their MATLAB and Stata code available to other researchers for easy imple-
mentation of the procedure at https://github.com/seidelj/mht; see Seidel and Xu (2016) for documen-
tation.

https://github.com/seidelj/mht
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is required to maintain control over the study-level false positive rate. As a simple exam-

ple, consider a researcher trying to determine the optimal sample size for an experiment

that compares a treatment and a control group along two different outcomes. In order to

ensure a study-level false positive rate of 5%, the researcher can use the above-described

method by Bonferroni (1935) and set the significance level cut-off to 0.05/2 = 0.025 for

each individual comparison, and calculate the optimal sample sizes accordingly.62

Ensuring sufficient statistical power in a study while accounting for multiple compar-

isons may substantially increase the number of participants required and thus the cost of

an experiment. As discussed in Section 6, appropriate design choices can be helpful in in-

creasing statistical power without expanding the experimental budget. In the following

two sections, we review in detail two such techniques that have the potential to reduce the

variance of the estimated treatment effect: blocked randomization and within subject ex-

perimental designs.

8 Use blocked randomization to increase power and

credibility

In Section 6, we have shown that the statistical power of a study is decreasing in the vari-

ance of the estimated treatment effect. We also highlighted approaches to reduce this vari-

ance by optimally choosing the ratio of subjects assigned to the treatment vs. the control

group. This section considers more broadly the process of assigning treatment status to

any given participant. In the following, we review the merits of blocked randomization

compared to complete randomization in terms of statistical power. We then approach

the topic from a different angle and show that blocking may reduce bias by serving as a

62Of course, this heuristic represents an overly conservative approach compared to our preferred MHT
correction method byList et al. (2019b) that has more power than traditional approaches to correct for
MHT.
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commitment device against specification searching. Finally, we discuss the choice between

randomization and optimization.

In the section on Preliminaries, we outlined the logic for randomly assigning subjects

to treatments: randomization balances the treatment and control groups both in terms of

observables and unobservables, allowing an unbiased identification of the treatment effect.

However, in a completely randomized design, the variance of outcomes is potentially very

large, and the sample sizes of treatment and control are randomly generated (List et al.

2011; Deaton and Cartwright 2018). As Duflo et al. (2007) point out, pure randomization

only achieves balance in expectation: in practice, especially in the case of smaller samples,

randomization may yield experimental groups that differ from each other along important

observable dimensions. A popular way to address this issue is to include covariates in the

estimation ex post. However, when data on subjects’ relevant observable characteristics are

available prior to conducting the experiment, it is preferable to use this information in the

design phase and improve the overall precision of the study through blocked randomiza-

tion.63

Blocking (also knows as stratification) refers to the practice of dividing experimental

subjects into blocks (strata) by observable characteristics, such that randomization is per-

formed within, but not between, these blocks (List et al. 2011). More formally, blocking

involves partitioning the covariate space into a finite set and carrying out a completely

randomized experiment within each of these subsets (Athey and Imbens 2017a). Using

Neyman’s repeated sampling approach, we can estimate the average treatment effect within

63 An alternative approach to dealing with covariate imbalance is re-randomization (Morgan and Rubin
2012; Bruhn and McKenzie 2009; Banerjee et al. 2017b). Two commonly used forms of re-randomization
are the “big stick” method that requires a new random draw if the imbalance between treatment and
control groups in the resulting allocation exceeds a pre-specified threshold, and the “minimum maximum
t-stat” method that suggests performing multiple (1,000 or 10,000) draws, checking for balance each time,
then choosing the draw with the minimum maximum t-stat. Bruhn and McKenzie (2009) show that for
very persistent outcome variables, and in smaller samples, blocked randomization performs better than
re-randomization.
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each block as the difference between the average outcomes for treated and control sub-

jects, then estimate the overall average effect of the treatment by averaging the within-

block estimates weighted by the share of subjects assigned to the block. In case the share

of treated subjects is the same in each block, this simplifies to the difference in means be-

tween treated and control subjects – the same estimator we use for completely random-

ized designs (Athey and Imbens 2017a). Blocked randomization is beneficial because it in-

creases precision: the estimated variance of the treatment effect is smaller once we take

into account the gains from stratification. Compared to ex post regression adjustment,

blocking in the design phase is preferred because it can ensure that the share of treated

subjects is the same in each stratum, minimizing the variance of the estimate overall.64

Despite popular beliefs to the contrary, blocking does not lower precision ex ante even

when the correlation between the outcome variable and the covariates on which we block

is weak.65 Note that the same is not true for ex post adjustments: adding covariates that

do not explain the outcome variable in a regression increases standard errors by reducing

the degrees of freedom (Duflo et al. 2007). Consequently, one should stratify on a rich set

of covariates whenever possible, including continuous variables (Moore 2012).66 The limit

of stratified randomization is a paired design where each block contains only two obser-

vations: a treated and a control subject. While this approach has advantages in terms of

precision, it complicates the subsequent estimation of variance (Athey and Imbens 2017a).

64Following Athey and Imbens (2017a), we obtain the estimated variance of the treatment effect with
blocked randomization as follows (where g indexes blocks):

V̂ blocked =

G∑
g=1

V̂ (τ̂g)

(
Ng
N

)2

where τ̂g = ȲT,g − ȲC,g and V̂ (τ̂g) =
σ2
C,g

nC,g
+
σ2
T,g

nT,g
. (7)

Comparing the expression in (7) with the variance estimate for completely randomized experiments pre-
sented in Section 6, σ2

T /nT + σ2
C/nC , in general we find that the latter is more conservative.

65See Athey and Imbens (2017a) for an explanation and two important qualifications to this result.
66A fascinating recent paper explores blocking on the predicted treatment effects and on subjects’

willingness-to-pay for the treatments in order to design an “ethical experiment” that takes subjects’ pre-
dicted welfare into consideration (Narita 2018).
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Such a perfect matched pairs design also comes at high attrition costs for the matched

units, and should thus be applied with caution.

Stratification is also desirable when the researcher expects heterogeneity in response to

the treatment and wants to analyze subsamples separately. In this case, ex ante blocking

maximizes power for estimating the treatment effect for each subsample. Equally impor-

tantly, stratifying on variables that the researcher ex ante deems as relevant increases the

credibility of the study: it demonstrates to the reader that the subsample analysis pre-

sented in the research paper was actually planned in advance and is not merely the re-

sult of “data mining” or a “fishing expedition.” In this sense, blocking on variables to be

used in subsequent heterogeneity analysis helps address the problem of researcher bias dis-

cussed in Section 4, by limiting analytical flexibility (Munafò et al. 2017). If a researcher

uses blocking primarily for credibility reasons rather than to increase precision, she should

limit herself to blocking only on a few key variables. While hypothesis registries and pre-

analysis plans (Christensen and Miguel 2018; Coffman and Niederle 2015) may provide

stronger remedies against specification searching, blocking has the advantage of also in-

creasing the power of the resulting subsample analyses. Note, however, that blocking alone

does not address all the issues that arise from subgroup analysis: even if the experimenter

“ties herself to the mast” by stratifying on the relevant dimensions, standard errors still

need to be adjusted ex post for multiple hypothesis testing (see Section 7 for more details).

Utilizing baseline information to an even greater degree than in the stratification case,

some researchers have recently suggested relying on optimization instead of randomiza-

tion for assigning treatment status to subjects. Bertsimas et al. (2015) propose a method

based on discrete linear optimization, such that assignment is chosen to minimize the dis-

crepancy between treatment groups in terms of means and variances of covariates. Kasy

(2016) considers the experiment as a statistical decision problem where the goal is to find

the unique treatment assignment that minimizes a Bayesian or minimax risk function
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(based on the mean squared error of a point estimator). While these approaches have the

potential to increase power, gains in precision are substantial only when baseline variables

strongly predict future outcomes (see Bruhn and McKenzie (2009) for an illustration of

this point), and come at the cost of more complicated inference (a bootstrap method is

required to obtain the p-values of the estimates).67 Banerjee et al. (2017b) model the ex-

perimenter’s problem in a Bayesian decision theoretical framework. They argue that for a

given prior over treatment effects, there exists a deterministic treatment assignment that

maximizes the experimenter’s expected utility, leading to the proposition “Bayesians do

not Randomize.” Once multiple decision makers (or a single decision maker with different

priors) are considered, however, they identify randomization as the only method to yield

results whose interpretation cannot be challenged.

Overall, we are of the opinion that optimization on the basis of baseline covariates may

be a useful method for assigning subjects to treatments in pilot studies. Sample sizes in

pilots are typically small, so an increase in power is crucial. Furthermore, it is easily justi-

fiable to design pilots so that they are most informative for a specific prior (that of the ex-

perimenter) rather than for a wider audience with arbitrary priors. For most experiments,

randomization with “improvements” such as stratification or re-randomization remains

more suitable.68

9 Use within subject designs when appropriate

In our overview so far, we have focused on experiments consisting of a single period where

each subject is assigned to either the control or the treatment condition. These cases fall

67For more details, see David McKenzie’s excellent blog post on the topic: https://blogs.worldbank.
org/impactevaluations/optimization-just-re-randomization-redux-thoughts-recent-don-t-randomize-optimize-papers.

68See footnote 63 for details on re-randomization. As another possible design improvement, consider
Wilhelm et al. (2017)’s procedure based on an orthogonal greedy algorithm that uses pre-experimental
data to inform, rather than treatment assignment, the choice of both the sample size and the covariates to
be collected.

https://blogs.worldbank.org/impactevaluations/optimization-just-re-randomization-redux-thoughts-recent-don-t-randomize-optimize-papers
https://blogs.worldbank.org/impactevaluations/optimization-just-re-randomization-redux-thoughts-recent-don-t-randomize-optimize-papers
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into the category of between subject (BS) designs, because the estimated treatment

effect is obtained through a comparison of means between the two groups. This represents

the current state of art when economists generate data. Of course, researchers have the

choice to collect data in multiple periods, allowing for the use of a within subject (WS)

design, such that the same individual experiences different treatment conditions in subse-

quent periods. In the following, we discuss the benefits and threats associated with using

within subject designs along the dimensions of statistical power, confoundedness, and het-

erogeneity in response to treatments.

Within subject designs have been advocated for their potential to yield more power-

ful tests for the same cost than between subject experiments (Charness et al. 2012). In

particular, they allow for estimations controlling for individual-specific effects, reducing the

variance of the treatment effect estimator to the extent that within-subject correlations

explain the outcome (Frison and Pocock 1992; McKenzie 2012). Bellemare et al. (2016)

suggest an approach based on Monte Carlo simulations to compare the power achieved in

BS vs. WS designs. They provide a numeric example in the context of field experiments

on gift exchange, and find that a BS design requires 4-8 times more subjects than a WS

design to reach an acceptable level of statistical power (as discussed in Section 4, the con-

ventionally required level of power is 80%). They also emphasize that adding more exper-

imental periods can substantially increase the statistical power of a WS design, but has

very little effect in the BS design.69

Note that in the above comparison we ignored cost considerations, assuming that col-

lecting data from n subjects twice (WS design) is as costly as collecting data from 2n sub-

jects (BS design). In practice, however, this is often not the case; in laboratory experi-

69While a within-subject design typically leads to lower variances for the estimated treatment effect,
this is not necessarily the case. See Keren and Lewis (1993) for more details on precision in WS versus
BS designs in the presence of treatment effects that are correlated with the individual-specific error term.
For panel data with a non-i.i.d. error structures, we recommend Burlig et al. (2017)’s power calculation
method that accounts for serial correlation in errors.
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ments, adding additional periods to an experiment often comes at no additional mone-

tary cost for the researchers (think of the typical practice of determining subjects’ earnings

based on their behavior in one period randomly selected at the end of the experiment).

Field experiments, on the other hand, often have large per-period fixed costs (e.g. hiring

and training surveyors) that make additional rounds of data collection more expensive on

the margin.

Despite the fact that within subject designs have the potential to achieve better pre-

cision, in practice researchers do not seem to take the choice of design into account when

setting the number of experimental subjects: surveying two recent volumes of the journal

Experimental Economics, Bellemare et al. (2014) find that the median number of partici-

pants per treatment was relatively similar (43.5 and 50, respectively) for studies using BS

and WS designs. They also find that the majority of studies in their survey (41 out of 58)

are based on BS experimental designs. The relative unpopularity of within subject designs

may be due to the strong assumption they require for inference. When the same subject

is exposed to different treatment conditions, within-subject comparisons only provide a

causal estimate if there is independence of these multiple exposures (Charness et al.

2012). There are different reasons why this assumption may not hold, such as learning,

history and demand effects, and sensitization to perceived dependencies between treat-

ments (List et al. 2011; Keren and Lewis 1993).

As a result, findings from WS designs may be confounded and hard to interpret. Crossover

designs (where subjects are exposed to treatments in random order) may ameliorate, but

not eliminate, these fears. The extent to which confoundedness is a threat depends very

much on the particular research question. In some cases, one design is clearly better suited

to test a particular theory (consider, for instance, predictions about individual preference

reversals). When treatments are suspected of having persistent psychological effects or

when experimenter demand effect is a concern, researchers should be cautious when us-
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ing WS designs.70 On the other hand, skill-based experiments, such as the study of Smith

et al. (1989) on eyewitness accuracy and confidence, are less likely to yield a biased result

under a WS design (Charness et al. 2012). WS designs may also work better in cases when

the first treatment corresponds to the “status quo” (i.e. it conforms to the set of beliefs or

expectations participants have already held coming in to the experiment) such that it does

not induce learning nor cause sensitization to some aspect of the treatment.71

This trade-off between power and bias has been a central theme of the within versus

between subject debate. We would like to conclude this section by emphasizing another

aspect of the design choice that often receives less attention: between and within subject

designs differ in the extent to which they are informative of individual differences in re-

sponse to treatment. As we mentioned in the Preliminaries, a between subject comparison

with random assignment to treatment only produces an unbiased estimate of the average

treatment effect, but does not identify other moments of the distribution. While the av-

erage treatment effect conveys important information regarding the existence of an asso-

ciation or effect, it may mask crucial differences between participants in their reaction to

treatment. For instance, assessing the share of the population that was helped or harmed

by the treatment requires knowledge of the distribution of the difference between the out-

comes of each individual in the presence and absence of the program.

In experiments using between-subject treatment assignment, each participant is only

observed in one of the states, thus welfare analysis requires additional, often strong, as-

sumptions.72 Within person designs facilitate welfare calculations by measuring baseline

70See Bohnet et al. (2016) for a discussion on preference reversals between separate and joint evaluations
and Hsee (1996) for an overview of the literature on evaluability.

71An example where within and between subject designs yielded very similar conclusions comes from
two laboratory experiments studying the impact of affirmative action policies on participants’ willingness
to compete. In a between subject design, Balafoutas and Sutter (2012) find the same result as obtained
by Niederle et al. (2013) in a within subject design that gender quotas induce high-performing women to
enter tournaments without discouraging men from competing.

72Quantile regressions, for example, are only informative of the distribution of individual changes in
outcomes if a rank invariance condition is satisfied. Bedoya Arguelles et al. (2018) provide an excellent
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outcomes together with changes in response to the treatments for the different baseline

values, providing the entire joint distribution rather than marginals. Allcott and Taubin-

sky (2015) use a within-subject design in their information nudge experiment to estimate

the average change in valuation induced by their nudge for each level of initial valuation.

This strategy allows them to calculate the market demand curve and the average marginal

bias, statistics they show are sufficient for computing the welfare effects of a policy.

Further, WS designs can help distinguish between behavioral theories by showing het-

erogeneity in preferences within individuals. Gibson et al. (2013), for instance, refute the

type-based model of lying aversion by documenting differences within individuals (across

situations) in the estimated cost of lying.

WS designs can also help researchers uncover heterogeneous treatment effects. Data

from WS experiments can be used to plot a histogram of the realized “individual linear

differences,” calculated for each subject as the difference between their outcome in the

treated vs. the control state. Such histograms may hint at important dimensions of het-

erogeneity, and could suggest subgroups that benefit most/least from the treatment.73 As

an example, consider the study of Hoel (2015) on the role of asymmetric information in

dictator games. While she finds that subjects on average give more in games when the

choice is public than when it is secret, a within subject comparison reveals that almost

half of the participants give the same amount in both conditions. Her design allows her to

classify participants into types based on their individual response to the treatment, such

that types identified in the laboratory also behave differently in the field.

An alternative approach to studying heterogeneous treatment effects that does not

require multiple observations per participants makes use of machine learning (ML) tech-

summary of different methods aimed at identifying the distribution of individual specific treatment effects
in RCTs.

73It is important to emphasize that WS designs on their own still do not allow identification of the dis-
tribution of treatment effects. Readers interested in identifying the probability distribution of individual
effects in panel data should consult e.g. Arellano and Bonhomme (2012).
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niques such as causal trees (Athey and Imbens 2016) and causal forests (Wager and Athey

2018). As discussed in Section 7, this approach discovers heterogeneity by seeking to par-

tition the data into subgroups with different treatment effects (Athey and Imbens 2017b).

While applications of ML techniques have considerable promise for predicting treatment

response differences based on observable covariates, there are two issues we need to keep

in mind. First, ensuring the consistency of estimates requires an “honest” approach to es-

timation, whereby the sample is split to ensure that the data used for partitioning the co-

variate space are different from data used for estimation of the treatment effects. Testing

the out-of-sample accuracy of predictions also requires a hold-out sample that is not used

at all for training or estimation. As such, these methods tend to work best with larger

data sets (Davis and Heller 2017). Second, in case some of the covariates are correlated

with each other, consistency in model selection is not ensured: the importance of spe-

cific covariates for prediction may vary across sample partitions (Mullainathan and Spiess

2017). As such, these techniques do not allow the researcher to conclude that certain ob-

servables are not associated with treatment effect heterogeneity just because they were not

used by the algorithm to create the prediction.

In sum, we encourage researchers to carefully weigh the pros and cons of between and

within subject designs along the dimensions discussed above (power, cost, bias, learning

about heterogeneity) and pick the one better suited to answering their particular research

question. Just as in the case of the choice between lab or field experiments discussed in

Section 3, there is no universally preferred method: the choice to vary treatment condi-

tions within or between subjects should depend on the characteristics of the experiment

and the nature of what information is sought and the trade-offs the researcher is willing to

make. In a nutshell, it depends on the theory to be tested – a topic we discuss in the next

section.
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10 Go beyond A/B testing by using theoretically-guided

designs

In Section 6 and the discussion of optimal experimental design that followed, we mainly

focused on experiments whose main goal was to measure whether one treatment condition

yields a different mean outcome than another treatment and/or the control condition. A

simple example for this approach is “A/B testing”, a method common both in research

and in business, that entails showing subjects one of two versions of the same product

or service at random, and comparing responses. Yet, the experimental method will never

reach its true potential unless we go beyond simply documenting the existence/size of an

effect. Rather, we should exploits experiments’ ability to generate data that allows us to

explore the underlying mechanisms at work, to understand the whys behind the data pat-

terns observed. We therefore need to design experiments tightly linked to economic theory

in order to reap the true benefits of the experimental method.

Despite its advantages, using theory is still not a commonplace occurrence: out of all

the experiments published in the top 5 journals in Economics (American Economic Re-

view, Econometrica, Journal of Political Economy, the Quarterly Journal of Economics,

Review of Economic Studies) between 1975 and 2010, 68% were “descriptive”, meaning

that they lacked an economic model; of the remaining articles, only 14% allowed for more

than a single model, either by directly comparing competing models or by estimating one

or more structural parameters (Card et al. 2011). The theory-free nature of RCTs is a se-

rious disadvantage in attempting to generalize (Deaton and Cartwright 2018). By combin-

ing experiments with theory we can reap the best of both worlds: preserving causal infer-

ence (due to the exogenous variation created by the experiment) and improving the gen-

eralizability of predictions through theory and structural estimation (for a recent example

see DellaVigna et al. 2012).
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To address this gap, we advocate for experimental economists to use economic theory

to inform their experimental design whenever possible (Banerjee 2005; Heckman 2010; List

2011), and to incorporate results from experiments into existing economic theory (Deaton

and Cartwright 2018), thereby creating a feedback process that guides the development of

theory and the design of future experiments (Duflo et al. 2007). Combining economic the-

ory with experiments allows researchers to estimate a wider array of parameters (Attana-

sio and Meghir 2012), to perform counterfactual analysis, to test theories directly (Brown-

ing and Chiappori 1998), and to account for general equilibrium and welfare effects. In the

following, we review in detail the benefits from designing experiments in connection with

economic theory.

First, we can use theory to explicitly model selection into the experiment. When run-

ning lab experiments, AFE, and FFE, researchers should make explicit their assumptions

about selection by using theory and, in doing so, address some of the concerns about gen-

eralizability discussed in Section 1. For instance, researchers could specify a variant of the

Roy model to describe selection into the experiment (Heckman 2010).

Using economic theory jointly with an experiment allows the researcher to perform

structural estimation to estimate the parameters of a theoretical model from data col-

lected in an experiment. This enables researchers to perform ex-ante counterfactual

policy analysis: to predict the effects of policies or programs that have not yet been im-

plemented and over which no data are available (Heckman 2010).74 Therefore, economic

theory allows researchers to extrapolate the results of existing experiments to other popu-

lations and settings (Banerjee 2005; Falk and Heckman 2009, see Section 12 for a discus-

sion on scalability).

Coupling experiments with structural estimation allows researchers to understand the

mechanisms underlying the observed behavior in the experiment. As an example, con-

74For a discussion of structural estimation and reduced-form estimation, see Nevo and Whinston (2010).
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sider the RCT by Dupas (2014) that employed a two-stage randomization of the pricing

of a novel product to differentiate between two possible mechanisms of policy adoption; or

the field experiment by Chandrasekhar et al. (2018) designed to separate two mechanisms

(reputation vs. shame) in a model of stigma. Moreover, researchers can design their exper-

iment with the structural model in mind, in such a way that makes the identification of

the relevant parameters possible. For example, as part of their experiment, Hedblom

et al. (2016) set up a “firm” to hire workers, and by varying the wages they paid as well as

the level of corporate social responsibility perceived by their workers, were able to identify

and estimate a structural model of unobserved worker heterogeneity. The identification of

the relevant parameters also allows for measuring welfare effects. In a door-to-door do-

nation experiment by DellaVigna et al. (2012), some households were warned of the solic-

itors’ upcoming visit such that they could sort in or out of the intervention, and this sort-

ing behavior (together with the donation choices of those who opened the door) allowed

the identification of altruism and social pressure parameters, and of welfare estimates.

When researchers want to estimate a structural model, they can think about the “ideal

data” for the identification of those parameters, and then design an experiment that gen-

erates exactly that type of data. But even when the experiment is already underway, re-

searchers can still identify a relevant structural model using precisely the unique features

of the experimental data. Low and Meghir (2017) discuss an interesting comparison be-

tween different approaches for using structural models to exploit experimental data in the

context of PROGRESA, a conditional cash transfer program in Mexico aimed at increas-

ing school participation in poor rural areas. Todd and Wolpin (2006) estimate a structural

model of school participation, taking into account the opportunity cost for children; their

focus is on the validation of their model (identified from control data only), that can

then be used to make predictions. In contrast, Attanasio and Meghir (2012) estimate a

model in which the grant can have a different marginal utility than other sources of in-
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come (such as child wages), what allows for identification of the effect of the grant even in

the presence of general equilibrium effects. As these examples demonstrate, the different

advantages of combining structural estimation with experiments we have surveyed are not

mutually exclusive, and researchers can find creative ways to exploit these synergies.

Economic theory is also useful when considering spillover effects, whereby subjects

impose externalities on others (for example, those in treatment can inform their friends in

the control), and general equilibrium (GE) effects, that occur when agents react to

the intervention in a way that changes the environment itself (Duflo et al. 2007; Maniadis

et al. 2015).75 GE effects are of great importance in diverse contexts ranging from eco-

nomic development (Banerjee 2005; Acemoglu 2010), to health care utilization (Finkelstein

2007) and the microcredit literature (Burke et al. 2014). However, most experiments are

conducted assuming partial equilibrium, i.e. assuming away spillover and GE effects. Dis-

regarding the GE effects of experiments might be justified for small interventions that only

affect a few participants or that have a small impact, such as in lab experiments and arte-

factual field experiments (AFE). However, field experiments (FFE and NFE) can induce

changes in the local economy that could translate into general equilibrium effects. Neglect-

ing these GE effects biases the results and leads to misleading conclusions about the true

effect of the intervention. This is especially true for large-scale interventions claiming to

have a large impact. Such experiments should attempt to include measuring the general

equilibrium effects as part of their experimental design whenever possible.

The measurement of GE effects typically requires an experimental design that explic-

itly accounts for them. For example, Crépon et al. (2013) included two levels of random-

ization in their experiment, one of them being the proportion of individuals assigned to

treatment, allowing them to capture the GE effects of their intervention. Another exam-

75Note that spillover effects violate the “Stable Unit Treatment Value Assumption” (Angrist et al. 1996;
Duflo et al. 2007) discussed in the Preliminaries. For the rest of the section, we will use the term “general
equilibrium effects” to also include spillovers.
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ple is the study by Cunha et al. (2017), who estimate the GE effects of cash versus in-kind

transfers in Mexican villages: both types of transfers had similar value (allowing a partial

equilibrium comparison), but the in-kind transfers also generated more supply of certain

goods in the market, affecting the calculation of the intervention’s general equilibrium ef-

fect.

The importance of measuring a program’s welfare effects has been widely acknowl-

edged (Heckman 2010). Recently, welfare analysis has made its way into behavioral eco-

nomics, yielding a fruitful collaboration between economic theory and experiments: in ad-

dition to measuring the traditional outcomes of the experiment, researchers can use theory

to infer the change in subjects’ well-being as a consequence of treatment. DellaVigna et al.

(2012) provide an early example of measuring welfare effects in a natural field experiment

via structural estimation: they find that a door-to-door campaign of charity donation de-

creased the welfare of the average household due to the social pressure associated with not

donating.76

However, welfare calculations may be sensitive to certain details. First, the particular

theory researchers base their calculations on has important consequences for the conclu-

sions on welfare (Jimenez-Gomez 2018). This aspect is even more salient in areas where

individuals are known to be subject to behavioral biases.77 Second, GE effects should

be included in welfare calculations. As an illustration, consider Handel (2013)’s study of

health insurance markets where substantial inertia had been observed. He structurally es-

76Related studies test specific aspects of behavioral theory and their welfare consequences through
field experiments: (Zhe Jin et al. 2010; Bernheim et al. 2011; Allcott and Taubinsky 2015; Allcott and
Kessler 2019; DellaVigna et al. 2017, 2016), and develop theories that explicitly consider how behavioral
economics affects welfare measurement: (Spiegler 2014; Gabaix and Farhi 2017; Jimenez-Gomez 2017).
Finkelstein and Notowidigdo (2018) use a randomized natural field experiment to test two competing
explanations – based on neoclassical and behavioral theory, respectively – for the low take-up of SNAP
benefits, and estimate the welfare impact of different interventions aimed at increasing take-up.

77When individuals face behavioral biases, welfare calculations using only the demand curve (and there-
fore ignoring those biases) can be potentially mistaken by orders of magnitude, and even have the wrong
sign (Baicker et al. 2015).
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timates a choice model in order to compute the welfare effects of a counterfactual “nudge

reminder”, and concludes that although the nudge would increase the rate at which peo-

ple select into plans that better match their needs (reducing inertia), the GE effects would

exacerbate adverse selection, leading to a price increase and a loss in average welfare. Fi-

nally, researchers should pay attention to potential heterogeneity in treatment response

(see Sections 1 and 12). Heterogeneity is crucial when computing welfare effects, because

different individuals may benefit (or suffer) to varying degrees from a given program, and

therefore the distribution of welfare can be very different for some subpopulations (Jimenez-

Gomez 2017).

Using economic theory is not without caveats. It is always possible that the particular

economic theory we consider is wrong, and this concern has been exacerbated with the rise

in importance of behavioral economics (Banerjee 2005). Moreover, structural estimates are

sensitive to assumptions about functional forms and distribution of unobservables (Heck-

man 2010). The correct design of the experiment can never be undermined due to con-

fidence in the theory.78 To conclude, we would like to emphasize what we are not advo-

cating. We do not call for every experiment to be derived from economic theory or to be

structurally estimated. There are occasions when a descriptive study is perfectly appro-

priate, for example when attempting to differentiate between several competing theories

whose predictions go in opposite directions (Acemoglu 2010). We also do not advocate

for journals to demand that authors include ad-hoc economic models after the experiment

has been conducted and the data analyzed. Such models add little value in our opinion

and can confuse readers as to the true intent and nature of the studies. We do believe

that there is value in descriptive experiments, but the limitations of these types of stud-

ies should be explicitly acknowledged. We also believe that in order to make generalizable

78Card et al. (2011) claim this was the case in the negative income tax experiments conducted in the
late 1960s and early 1970s.
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predictions, using economic theory to design experiments and to guide the analysis is often

the correct choice (Heckman 2010; Acemoglu 2010).

11 Focus on the long run, not just on the short run

Economic experiments often tend to focus on estimating short-term substitution effects.

This is probably due to the fact that conducting an experiment that follows up subjects

for several months or years is substantially more costly: the logistics required become com-

plex, and there is a need to incentivize subjects to come back for follow-ups to avoid at-

trition.79 In addition, there is always an implicit opportunity cost associated with longer

experiments, because their longer time to completion delays publication compared to simi-

lar trials that focus on short-term effects.

However, understanding the long-term effects of interventions is critical. For example,

demand elasticities can be very different in the short-run vs. the long-run (Huang et al.

2017). Long-term effects are especially relevant when the interventions are programs that

governments or other organizations intend to roll out in large scale (we discuss scalabil-

ity in Section 12). As we emphasized in Section 10, it is fundamental to take into account

the general equilibrium (GE) effects of the implemented policies and programs. However,

those GE effects often need time to manifest, so measuring the long-term effect of inter-

ventions is even more important. Moreover, Hawthorne, John Henry, and experimenter de-

mand effects can in principle be identified by collecting long-run data (Duflo et al. 2007).

In addition, the return on investment (ROI) per dollar will be much larger if the effects

persist in the long-term. For example, Levitt et al. (2016) provided financial incentives to

high school freshmen for 8 months conditional on meeting an achievement standard, and

followed the participants for five years. They found a significant positive impact of the in-

79For example, Charness and Gneezy (2009) paid 50 US dollars to subjects for each of two follow-ups.
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centives on academic achievement in the short run, but the long-term follow-up revealed

that the gains did not persist beyond the first year.

Despite the widespread focus on the short term in experimental economics, there are

several notable papers that analyze the medium- and long-run effects of experimental in-

terventions.80 As Brandon et al. (2017) demonstrate, the evidence on whether interven-

tions work in the long run is mixed even when restricted to a single subfield. Out of ten

studies included in their review (covering the fields of charitable giving, education, exer-

cise, smoking cessation and weight loss), four are consistent with habit formation, whereas

the other six are not (see Figure 2, plotting the proportion of the intervention’s effect that

persists after incentives are removed). Moreover, even when the effects persist, they decay

rapidly: only two of the aforementioned studies found estimated effect sizes larger than 25

percent of the initial effect after just a month, and only one found any persistence after six

months.

There are two potential and non-excluding reasons why researchers may find no or

small effects of interventions in the long run, with very different implications for the actual

existence of a treatment effect. The first and most obvious explanation is that the effect

of the interventions is truly zero in the long run. This could happen if the intervention is

not successful in changing behavior in the first place, either because subjects do not enroll

in the relevant treatment, because the incentives or nudges are “too weak,” or because the

treatment changes behavior in a way different than expected. Even if the treatment is suc-

80We found relevant papers in the following areas: exercise (Charness and Gneezy 2009; Milkman et al.
2013; Royer et al. 2015; Acland and Levy 2015), smoking cessation (Volpp et al. 2006, 2009; Giné et al.
2010), weight loss (Volpp et al. 2008; Burke et al. 2012; John et al. 2011; Anderson et al. 2009), charita-
ble giving (Meier 2007; Shang and Croson 2009; Landry et al. 2010), water conservation (Ferraro et al.
2011; Ferraro and Price 2013), energy conservation (Allcott and Rogers 2014; Brandon et al. 2017), voting
(Gerber et al. 2003), labor effort (Gneezy and List 2006), exposure to better neighborhoods (Chetty et al.
2016) and education (Jackson 2010; Jensen 2010; Walton and Cohen 2011; Rodriguez-Planas 2012; Levitt
et al. 2016). Note that some of these papers would be better classified as belonging to the literatures on
psychology, medicine and behavior change, but are included here for completeness. In their review, Rogers
and Frey (2016) analyze how field interventions to improve societal well[U+2010]being work over time.
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Figure 2: Persistence of effects across domains

cessful in changing behavior in the short-term, subjects could revert to baseline behavior

over time even in the presence of the intervention: as the novelty of the incentives tapers

off, or if the intervention crowds out intrinsic motivation, subjects revert to old habits.

Yet, there is a second reason why long-run estimates of treatment effects are so often

(close to) zero: the “attenuation bias over time.” Consider a field experiment where

subjects are assigned to a treatment zi ∈ Z. The researchers would like to measure the

Average Treatment Effect at time t, τ ∗t = E[(yi1t − yi1t0) − (yi0t − yi0t0)].81 Note, however,

that they can only measure τ = E[yit− yit0|zi0 = 1]−E[yit− yit0|zi0 = 0].82 Importantly, zi0

81Where yidt is the outcome of individual i in treatment d at time t, and t0 is the time at which the
intervention starts.

82Where yit = yiditt is the outcome of individual i at time t, given the fact that individual i is in treat-
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refers to the original assignment at time t0, but subjects may change their behavior over

time, effectively changing their treatment (we discuss this form of non-compliance in Sec-

tion 1). Subjects may self-select into different treatments over time: we can think of this

change as probabilistic, happening with a higher probability when the gains from chang-

ing treatment status are high and the cost of changing is low. As time goes by, attenu-

ation bias increases and as time goes to infinity, the estimated average treatment effect

approaches zero.83

If selection into the experiment (pi = 1) is positively correlated with the utility from,

or negatively correlated with the cost of changing treatments, then the attenuation bias

will be exacerbated in overt experiments compared to natural field experiments. When

researchers find an ATE close to zero due to attenuation bias over time in a an overt ex-

periment, it does not mean that the treatment did not work in the first place, but that

subjects who selected into the experiment (pi = 1) found a way to improve their out-

comes over time, even when they were initially assigned to control.84 A solution to atten-

uation bias over time is to measure the effect of the intervention with respect to a control

group that did not self-select into the experiment (p = 0): τ ′ = E[yit − yit0|p = 1, z0 =

1]− E[yit − yt0|p = 0], where yit = yiditt is the outcome for individual i at time t. Note that

τ ′ controls for changes that happen in the treated group, with respect to a group that is

not part of the experiment.85 This also allows researchers to identify cases when the treat-

ment dit.
83In the Appendix, we assume that the occurrence of opportunities to change treatment follows a Pois-

son distribution, and that the actual change of treatment follows a Markov process, and formally show
that in the limit, τt → 0.

84This could happen if those who selected into the experiment were more motivated, and hence more
likely to find ways to enroll into alternative programs outside of the experiment that would improve their
outcomes, or if there were spillover effects in the experiment (see Section 10) and those initially assigned
to the control group were more likely to be affected by the treatment because of the fact that the exper-
iment was being run (for example, their friends in the treatment group informed them about the ways to
get enrolled in similar programs, etc).

85This can be seen because τ ′ gives us the correct measurement in the extreme cases when either the
treatment has no effect but selection into the experiment has an effect (in which case τ ′ = 0), or when
selection into the experiment has no effect but the treatment has an effect (in which case τ ′ = τ∗).
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ment works and has spillover effects, which could otherwise be mistaken for a lack of long-

run effect.

For all the reasons mentioned above, studying long-run effects should be a routine prac-

tice of experimental economics whenever doing so enhances our scientific understanding of

the theory, mechanisms, or facts around the question. To reduce the delay in publishing

that long-term studies require, researchers could in principle continue to collect data after

their first, short-term results have been published (Banerjee 2005). Moreover, it is often

possible to track subjects over time without incurring additional costs, for example when

data is already being collected for administrative purposes, or when researchers establish

long-term collaborations with firms who continue to share their data beyond the initial ex-

periment.

12 Understand the science of scaling ex ante and ex

post

Throughout this paper, we have discussed problems related to statistical inference, gener-

alization and reproducibility. These issues become especially salient when researchers at-

tempt to scale up their interventions, i.e. to extend them to a population which is larger

(and usually more diverse) than the original one. Unfortunately, out of the large number

of program evaluations performed today, few programs are ever scaled, and when they are,

the effect sizes often diminish substantially: a phenomenon known as “voltage drop” (Al-

Ubaydli et al. 2017a). There are many possible reasons why such a voltage drop might oc-

cur, and it is crucial to understand why scaled-up programs often do not work as intended.

Yet we believe that the problem is currently too narrowly defined along two important di-

mensions (Al-Ubaydli et al. 2017c). First, the discussion around voltage effects in the im-

plementation science literature tends to focus mostly on the scaled-up program’s benefits.
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However, understanding the relative benefits and costs are both invaluable to the scala-

bility discussion. Second, whereas that literature tends to focus on program fidelity as a

major reason for the lack of proper scaling, we see three main areas where challenges to

scalability arise: statistical inference, representativeness of the population and represen-

tativeness of the situation. Al-Ubaydli et al. (2017c) provide a formal model of the way

these three factors manifest in the market for scientific knowledge; we simply sketch them

below to highlight issues experimenters should consider in their design, analysis, and inter-

pretation that could affect the scalability of their results.

Statistical inference. In Section 4, we introduced the concept of the post-study prob-

ability (PSP, Maniadis et al. 2014): the probability that a declaration of a research finding

made upon statistical significance would actually be true. We discussed how insufficient

statistical power combined with bias resulting from specification searching may lead to

low post-study probabilities. We further explained that as more researchers investigate the

same relationship independently of each other, the probability that a statistically signifi-

cant effect or association truly exists becomes smaller. Moreover, studies with “surprising”

results (i.e. low prior probabilities of being true) tend to be published in journals more of-

ten, in turn resulting in low PSP. For all these reasons, a program that is selected on the

basis of just one successful initial trial may fail to produce effects when scaled. Further-

more, the phenomenon of effect inflation, i.e. obtaining an exaggerated estimate of the

magnitude of a true effect (discussed in Section 4), implies that a program that is scaled

after a single study is likely to yield a much smaller effect than the original study.

To curb these problems, Al-Ubaydli et al. (2017a) advocate for only advancing results

to the policymaking stage once their PSP passes 95%. Crucially, the PSP increases sub-

stantially if the initial positive finding is followed by at least two successful replications

(Section 5). Moreover, successful replications in different contexts are valuable for ensur-

ing generalizability (Duflo 2004; Muralidharan and Niehaus 2017, see Section 1). Replica-
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tion may also be used to measure average within- and across-study variation in outcomes:

when these are close, the concern about across-context generalizability is reduced (Vivalt

2017).

Representativeness of the population. Heterogeneity in populations may present

problems for scalability, as discussed in the context of generalizability in Section 1. During

scaling, the population that selects into the program is often different than the original ex-

perimental sample, raising the concern that the estimated treatment effect will be different

(usually smaller) in the new population. Such “scaling bias” may result from adverse het-

erogeneity (Al-Ubaydli et al. 2017c), describing a situation when the original experimental

participants’ attributes are correlated with higher expected outcomes. This may occur as

a result of participation bias (participants self-select into the experiment on the basis of

their expected gains from participation Al-Ubaydli and List 2013) or publication bias (re-

searchers have incentives to find participants who yield large treatment effects Al-Ubaydli

et al. 2017c). Another concern for scalability related to the population is attrition, an is-

sue we discussed in detail in Section 1.

Representativeness of the situation. The first and most obvious change when scal-

ing up a smaller program concerns the infrastructure: scaled-up programs often need a

larger and more complex infrastructure to support them, leading to a potential increase

in their cost. Moreover, program evaluations are often run by particularly high-quality of-

ficials or NGOs in a way that is hardly possible to scale up: as the program is expanded,

its quality may deteriorate (Duflo et al. 2007). When scaling, researchers need to be aware

that more workers must be hired, and they might be of lower quality or have less interest

in the program, simply due to the diseconomies of scale associated with requiring more la-

bor in a labor market with inelastically-supplied human capital (Al-Ubaydli et al. 2017c;

Davis et al. 2017; Banerjee et al. 2017a). This may reduce the benefits of the program

(through lower-quality program workers) and/or increase its costs (when trying to keep
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the quality of workers high). In addition, the cost of recruiting more subjects may be lower

or higher than in the initial experiment, depending on the particular implementation of

the scaled-up program (for example, a program that automatically enrolls citizens can

have lower marginal costs, once the setup for recruitment is ready).86

In addition to the three areas listed above, general equilibrium (GE) effects are

also crucial when considering scaling (Banerjee et al. 2017b; Al-Ubaydli et al. 2017b, also

Section 10 for the importance of GE effects). GE effects can cause researchers to under-

estimate the effect of their interventions in at least two ways: if there are spillovers from

the treated group to the control group, in such a way that the ATE was biased downwards

in the original intervention because the control group was benefiting from treatment; and

if there are complementarities between those treated, for example in an educational inter-

vention in which students benefit not only from their own treatment, but also from having

treated peers.87

On the other hand, researchers may overestimate the effect of their intervention if they

do not take into account its crowding out effect (Crépon et al. 2013).88 Moreover, the in-

terventions that work when scaling up might be more complex than those employed while

piloting the program.For example, in the case of long-term, chronic medical conditions, the

86Interestingly, many of these issues could be exacerbated “when rolling out revolutionary ideas, as these
often challenge the power and established practices of incumbent organizations” (Al-Ubaydli et al. 2017c).
Therefore, programs with greater community coalition functions, communication to stakeholders, and sus-
tainability are more likely to still be in place over two or more years beyond their original funding (Cooper
et al. 2015).

87Dramatic evidence of such spillovers comes from List et al. (2019a), who examine a randomized field
experiment among 3-5 year olds in Chicago described in Fryer et al. (2015, 2017). They find that each
additional treated child residing within a three kilometer radius of a control child’s home increases that
child’s cognitive score by 0.0033 to 0.0042 standard deviations. Given that an average child in their sam-
ple has 178 treated neighbors residing within a three-kilometer radius of her home, on average, a child
gains between 0.6 to 0.7 in cognitive test scores and about 1.2 in non-cognitive test scores in spillover ef-
fects from her treated neighbors. These are large spillovers, which serve to highlight that the program at
scale would have much larger effects than the Fryer et al. (2015, 2017) summaries of the research program
predicted, ceteris paribus.

88A related issue is that of construal, i.e. the subjects’ subjective understanding of the intervention.
Paluck and Shafir (2017) argue that scaling up mandatory arrest of abusive domestic partners (as a result
of an experiment) backfired due to the construal of (what it meant) calling the police in that situation.
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most effective interventions are usually complex combinations of basic interventions such

as educational sessions, counseling, and a selection of reminder methods (Al-Ubaydli et al.

2017a). Therefore, the benefit of a scaled-up program can be higher or lower than that of

the original intervention, depending on the direction of the GE effects.

In light of the scaling problem, our main recommendation is that researchers “backward

induct”, having the issue of scaling already in mind when designing their experiments and

programs. First, both clinical researchers and economists can greatly benefit from follow-

ing experimental best practices, such as emphasizing sound inference (Sections 4 and 7),

ensuring appropriate sample sizes and sufficient power (Section 6) and conducting replica-

tions (Section 5). Moreover, a unified framework for addressing scalability should consider

the underlying mechanisms of the program, as well as the relevant population, time-span,

implementation partners needed, etc. In short, programs are more likely to scale up when

they are driven by an understanding of the underlying mechanisms, the randomization (of

subjects and of workers) happens in a large enough population, and the time scale is long

enough to accurately measure the main effects as well as spillovers and GE effects.

First, in terms of mechanisms, researchers should go beyond A/B testing to the whys

of the phenomena they want to study, using existing evidence to build theories that can

help explain the experimental results, and providing a theoretical basis for fidelity in the

Al-Ubaydli et al. (2017c) model. Economists could structurally estimate behavioral models

as they seek to scale results, as we argued in Section 10.

Researchers should also consider whether results from their program are likely to gen-

eralize, being especially sensitive to heterogeneity across populations and contexts (Sec-

tion 1), and choose the optimal experiment type in light of their scaling goals (an issue we

discussed in Section 3). In terms of the population, an approach that is likely to result in

better generalization is to consider the (large) population of interest first, take a represen-

tative (smaller) sample of observations this population, and then randomize those to treat-
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ment or control (Muralidharan and Niehaus 2017).89 Compliance to the program must also

be taken into account. Lessons derived from earlier interventions can help in this endeavor:

Al-Ubaydli et al. (2017a) argue that there is much to be learned from medical researchers

who have been rigorously studying a similar problem for years.90

The issue of diseconomies of scaling in hiring workers to scale up an intervention can be

tackled by randomizing the hiring process itself as part of the initial experiment, in a way

that allows researchers to estimate the loss in worker quality as they move along the sup-

ply curve (Davis et al. 2017). Researchers can then use these insights in their initial cost

effectiveness calculations before rolling out the experiment on a larger scale. In addition,

GE effects can be estimated by using large units of randomization whenever possible (for

example, randomizing at the school level instead of at the student level, Muralidharan and

Niehaus 2017).91

Finally, it is important to evaluate the program’s implementation, and document all

steps of the process (Duflo et al. 2007; Banerjee et al. 2017a). This includes having a pre-

analysis plan, and creating an initial program that is modular, in the sense that its imple-

mentation can described by a simple protocol (Banerjee 2005).

It is worth adding that machine learning can offer new opportunities for improving the

scaling of interventions. Machine learning offers several potential advantages that economists

can profit from (Mullainathan and Spiess 2017; Athey 2018), such as providing a bench-

mark against which to test economic theory, predicting who will benefit from a certain

policy (for example, Björkegren and Grissen 2018, use machine learning to predict loan

89For example, Muralidharan and Sundararaman (2015) first sample a “representative universe” of vil-
lages with a private school, and then randomly assign each of them to treatment or control in a school
choice experiment.

90In particular, non-adherence to medication can lead to financial and personal costs – incentives that
nonetheless seem too weak to motivate individuals.

91A prominent example is that of Miguel and Kremer (2004) who realized the importance of spillover
effects from deworming programs by randomizing the programs at the school (rather than the student)
level. However, Banerjee et al. (2017a) warn that sometimes it is difficult to know ex ante what random-
ization unit will be large enough to capture all GE effects.
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repayment using cellphone data),92 and estimating heterogeneous treatment effects. While

machine learning and artificial intelligence have only started making their way into eco-

nomic research, they have great potential and, when combined with experiments, offer the

promise of improving the scaling of interventions.

Conclusion

When new areas of inquiry arise in the sciences, they are oftentimes greeted with much

skepticism, yet if they prove fruitful, they grow quickly but many times non-optimally.

Such an oft-observed pattern effectively results in a missed moment to advance knowledge,

and backtracking on ill-advised research journeys often is difficult. We now find ourselves

in a phase of rapid growth of the experimental method in economics, especially as ap-

plied in the field. To help ensure that we seize this opportunity to maximize the scientific

knowledge created using experiments, we take this occasion to step back and attempt to

set up some guard rails by crafting a 12 item wish list that we hope scholars can do more

of in their own research. By creating such a list we are not implying that these 12 items

are entirely ignored in the extant literature; indeed, throughout our paper we highlight ex-

amples of research that already engages in these best practices.

While picking a dozen items for such an exercise is akin to picking one’s favorite re-

search project or one’s favorite child, we nevertheless attempt in this tome to do just that.

Rather than regurgitate how our twelve items span three bins that are usefully summa-

rized by three questions, we wish to close with a few items that we find important but just

missed our wish list.

Our first addition is a call to define the research questions and analysis plan before

92Other examples of machine learning for predicting behavior are Glaeser et al. (2016), who crowd-
sourced an algorithm for predicting health code violations in restaurants; and Goel et al. (2016), who
predict the likelihood that a target of stop-and-frisk policies actually has a weapon.
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observing the outcomes of an experiment – a practice known as preregistration (Nosek

et al. 2018). This approach has been adopted as a remedy against specification search-

ing in a plethora of other fields, most notably medical trials, and we fully anticipate con-

siderable scientific gains in economics thanks to this movement.93 The reason we did not

include it on our list, though it did permeate certain aspects of our discussion (see Sec-

tion 8), is that this push has taken place and is relatively far along already: the Open Sci-

ence Framework’s database has received 18,000 preregistrations since its launch in 2012,

with the number roughly doubling every year, and more than 120 journals in various fields

now offer registered reports. As such, while we strongly recommend pre-registering exper-

iments (possibly augmented with machine learning, as recently suggested by Ludwig et al.

(2019)), we feel that its inclusion in our wish list would add less value than other, less-

discussed items.

Our second addition emphasizes the need to work on issues of first order import, and

disseminate results from economic experiments more broadly. Academic researchers, re-

sponding to career incentives that are almost exclusively tied to publications in peer-reviewed

economics journals, typically spend little time and effort communicating their findings to

a wider audience. While the profession has made progress towards experiments that pro-

duce relevant, generalizable and scalable results, researchers are typically not rewarded for

getting involved with the actual larger-scale implementation of their results. As a result,

even the most important new scientific findings with direct practical relevance often take

long to reach policymakers or practitioners, and when they do, they are often misrepre-

sented. To change this practice, we urge researchers to make their results more available

93The practice of requiring detailed pre-analysis plans for all empirical work has not been unanimously
endorsed by all in the profession. For instance, Coffman and Niederle (2015) warn that pre-analysis plans
may discourage the use of novel research designs. Instead, Heckman and Singer (2017, p.299) recommend
the practice of abduction, whereby ”[t]he successful abductor immerses himself in the data and the con-
ceptual issues underlying its generation and its interpretation, and reports the results of this immersion
to the reader. It is a public process where evidence, provisional models, and methods are revealed and
scrutinized.”
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by creating informative press briefings, posting summaries and non-gated versions of their

published papers online, exploiting the opportunities offered by social media, and estab-

lishing contact with policymakers and practitioners interested in applying their findings in

practice. Furthermore, we see great potential gains in engaging with the scientific commu-

nity more broadly, both by working more closely with researchers from other social science

disciplines, and by following the methodological discussions in other experimental sciences

such as biostatistics or neuroscience.

We end our wish list with a call to the experimental economics community to continue

engaging in the discussion to improve our field. While Samuelson’s famous quip that do-

ing methodological research is akin to doing calisthenics remains true today, we hope that

our work provides a useful starting point for those new to this discussion. We encourage

researchers who have been actively shaping this debate to create their own wish lists, or

to share with us items that we have missed in ours, since choosing one’s favorite method-

ological points is often fraught with err and oversight, and we trust that our list contains

both.
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Appendix

Generalizability Threat III: noncompliance case

We consider here the more general case of Threat III to generalizability (see Section 1),

for the case of noncompliance. The issue of selective noncompliance can be exacerbated

by non-random selection into the experiments, in which case pi is correlated with (zi, di).
94

In that case, there is a problem of generalizability when rolling the program to the entire

population.95 If the researchers are interested in the effect of the program λ∗ = E[yi1 −

yi0|ωFFE, d(zi = 1) = 1, d(zi = 0) = 0], we have that

λ∗ = P[pi = 1] · LATEp=1 + P[pi = 0] · LATEp=0,

where LATEp=1 is defined as in Equation 1, and LATEp=0 is defined analogously for

those with pi = 0.96 We can calculate the bias as we did in Equation 2 for the case of non-

compliance, which is given by P[pi = 0] · (LATEp=1 − LATEp=0).97 If the value of LATEp=0

is very different from LATEp=1, then the estimate from the FFE is not generalizable be-

cause, for most FFE, P[pi = 0] is much larger than P[pi = 1]. However, the estimate from

FFE will be generalizable when LATEp=1 ≈ LATEp=0, and this can happen if p is indepen-

dent of (zi, di):

pi ⊥⊥ (zi, di)|xi (Compliance Independence Condition).

94For example, if the stakes involved may affect both the selection decision into the experiment pi, and
then the subsequent behavior in response to the treatment di, or if those who select into the experiment
are more likely to comply with their assigned treatment, or the opposite, those who select into the experi-
ment are more likely to choose a particular d no matter what zi is.

95See also Section 12 for issues on scalability.
96That is, LATEp=0 = E[yi1 − yi0|ωFFE , di(zi = 1) = 1, di(zi = 0) = 0, pi = 0].
97Because LATEp=1 − λ∗ = (1− P[pi = 1]) · LATEp=1 − P[pi = 0] · LATEp=0.
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Generalizability framework from Al-Ubaydli and List (2013)

We present a very similar version of the framework in Al-Ubaydli and List (2013), which

was based on Heckman (2000)].

We say D has local generalizability if

∀(x, x′, z) ∈ D, ∃ε > 0 : Bε(x, x
′, z) ⊂ D ∪∆(R).

Note that if D is an open set, then D has local generalizability, even if D has zero gen-

eralizability.98 We say that D has global generalizability (of size M) if DM ⊂ D ∪

∆(R), where

Dε = {(x, x′, z) : ∃(x̄, x̄′, z̄) ∈ D with (x, x′, z) ∈ Bε(x̄, x̄
′, z̄)}.

Note that global generalizability of size M > 0 implies local generalizability. Moreover,

if D is finite, local generalizability implies global generalizability for some M > 0.99

Attenuation bias over time

Let τt = E[yit − yit0|zi0 = 1] − E[yit − yit0|zi0 = 0]. Since zi0 is random, then we have that

E[yit0|zi0 = 1] = E[yit0|zi0 = 0], and hence

τt = E[yit|zi0 = 1]− E[yit|zi0 = 0].

We assume that each individual changes treatments with a constant probability that is

positive if the new treatment has a higher outcome, and zero otherwise. For each individ-

ual, this generates a Markov Chain, and the stationary distribution πi is such that there

98This is because if D is open, then around each point (x, x′, z) ∈ D we can always find a small enough
open ball around (x, x′, z) that is contained in D.

99In particular, for M = min{ε : Bε(x, x
′, z) ⊂ D ∪∆(R)∀(x, x′, z) ∈ D}.
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is a mass 1 of probability at the treatment with the highest outcome (it is an absorbing

state) for individual i. Therefore, as t → ∞, each individual converges to the treatment

with the highest outcome. Again, as a result of zi0 being random, the stationary distribu-

tion πi is the same in expectation for zi0 = 1 and zi0 = 0, and therefore:

lim
t→∞

τt = lim
t→∞

E[yit|zi0 = 1]− E[yit|zi0 = 0] = E[y · πi|zi0 = 1]− E[y · πi|zi0 = 0] = 0.
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